Update src/streamlit_app.py
Browse files- src/streamlit_app.py +244 -38
src/streamlit_app.py
CHANGED
@@ -1,40 +1,246 @@
|
|
1 |
-
import altair as alt
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import google.generativeai as genai
|
3 |
+
from PIL import Image
|
4 |
+
import fitz # PyMuPDF
|
5 |
+
from docx import Document
|
6 |
+
import json
|
7 |
+
from pathlib import Path
|
8 |
+
from datetime import datetime
|
9 |
+
import re
|
10 |
+
import pytesseract
|
11 |
+
import io
|
12 |
|
13 |
+
def extract_text_from_pdf(pdf_file):
|
14 |
+
"""Extract text from uploaded PDF file."""
|
15 |
+
text_content = []
|
16 |
+
try:
|
17 |
+
pdf_bytes = pdf_file.read()
|
18 |
+
doc = fitz.open(stream=pdf_bytes, filetype="pdf")
|
19 |
+
for page_num in range(len(doc)):
|
20 |
+
page = doc[page_num]
|
21 |
+
text_content.append(page.get_text())
|
22 |
+
return "\n".join(text_content)
|
23 |
+
except Exception as e:
|
24 |
+
st.error(f"Error in PDF extraction: {str(e)}")
|
25 |
+
return ""
|
26 |
+
|
27 |
+
def extract_text_from_docx(docx_file):
|
28 |
+
"""Extract text from uploaded DOCX file."""
|
29 |
+
try:
|
30 |
+
doc = Document(docx_file)
|
31 |
+
text_content = []
|
32 |
+
for paragraph in doc.paragraphs:
|
33 |
+
text_content.append(paragraph.text)
|
34 |
+
return "\n".join(text_content)
|
35 |
+
except Exception as e:
|
36 |
+
st.error(f"Error in DOCX extraction: {str(e)}")
|
37 |
+
return ""
|
38 |
+
|
39 |
+
def parse_date(date_str):
|
40 |
+
"""Parse date from various formats."""
|
41 |
+
try:
|
42 |
+
# Handle 'Present' or 'Current'
|
43 |
+
if date_str.lower() in ['present', 'current', 'now']:
|
44 |
+
return datetime.now()
|
45 |
+
|
46 |
+
date_str = date_str.strip()
|
47 |
+
|
48 |
+
formats = [
|
49 |
+
'%Y', '%b %Y', '%B %Y', '%m/%Y', '%m-%Y',
|
50 |
+
'%Y/%m', '%Y-%m'
|
51 |
+
]
|
52 |
+
|
53 |
+
for fmt in formats:
|
54 |
+
try:
|
55 |
+
return datetime.strptime(date_str, fmt)
|
56 |
+
except ValueError:
|
57 |
+
continue
|
58 |
+
|
59 |
+
year_match = re.search(r'\b20\d{2}\b', date_str)
|
60 |
+
if year_match:
|
61 |
+
return datetime.strptime(year_match.group(), '%Y')
|
62 |
+
|
63 |
+
return None
|
64 |
+
except Exception:
|
65 |
+
return None
|
66 |
+
|
67 |
+
def calculate_experience(work_history):
|
68 |
+
"""Calculate total years of experience from work history."""
|
69 |
+
total_experience = 0
|
70 |
+
current_year = datetime.now().year
|
71 |
+
|
72 |
+
for job in work_history:
|
73 |
+
duration = job.get('duration', '')
|
74 |
+
if not duration:
|
75 |
+
continue
|
76 |
+
|
77 |
+
parts = re.split(r'\s*-\s*|\s+to\s+', duration)
|
78 |
+
if len(parts) != 2:
|
79 |
+
continue
|
80 |
+
|
81 |
+
start_date = parse_date(parts[0])
|
82 |
+
end_date = parse_date(parts[1])
|
83 |
+
|
84 |
+
if start_date and end_date:
|
85 |
+
years = (end_date.year - start_date.year) + \
|
86 |
+
(end_date.month - start_date.month) / 12
|
87 |
+
total_experience += max(0, years)
|
88 |
+
|
89 |
+
return round(total_experience, 1)
|
90 |
+
|
91 |
+
def parse_resume(file_uploaded, api_key):
|
92 |
+
"""Parse resume and extract information."""
|
93 |
+
genai.configure(api_key=api_key)
|
94 |
+
model = genai.GenerativeModel('gemini-1.5-flash')
|
95 |
+
|
96 |
+
prompt = """Extract the following information from this resume:
|
97 |
+
1. Summarize the following resume in 100 words, focusing on key skills, experience, and qualifications
|
98 |
+
2. Full Name
|
99 |
+
3. Email Address
|
100 |
+
4. Phone Number
|
101 |
+
5. Education History (including degree, institution, graduation year, and field of study)
|
102 |
+
6. Companies worked at with positions and EXACT duration (e.g., "Jan 2020 - Present" or "2018-2020")
|
103 |
+
7. Skills
|
104 |
+
8. LinkedIn Profile URL
|
105 |
+
Return the information in this JSON format:
|
106 |
+
{
|
107 |
+
"summary": "",
|
108 |
+
"name": "",
|
109 |
+
"email": "",
|
110 |
+
"phone": "",
|
111 |
+
"education": [
|
112 |
+
{
|
113 |
+
"degree": "",
|
114 |
+
"institution": "",
|
115 |
+
"year": "",
|
116 |
+
"field": "",
|
117 |
+
"gpa": ""
|
118 |
+
}
|
119 |
+
],
|
120 |
+
"work_experience": [
|
121 |
+
{
|
122 |
+
"company": "",
|
123 |
+
"position": "",
|
124 |
+
"duration": ""
|
125 |
+
}
|
126 |
+
],
|
127 |
+
"skills": [],
|
128 |
+
"linkedin": ""
|
129 |
+
}
|
130 |
+
For skills include tools and technologies in output if present any in resume.
|
131 |
+
For work experience durations, please specify exact dates in format: "MMM YYYY - MMM YYYY" or "YYYY - Present" , please return in one order either in ascending or descending.
|
132 |
+
Only return the JSON object, nothing else. If any field is not found, leave it empty."""
|
133 |
+
|
134 |
+
try:
|
135 |
+
file_extension = Path(file_uploaded.name).suffix.lower()
|
136 |
+
|
137 |
+
if file_extension == '.pdf':
|
138 |
+
text_content = extract_text_from_pdf(file_uploaded)
|
139 |
+
elif file_extension in ['.docx', '.doc']:
|
140 |
+
text_content = extract_text_from_docx(file_uploaded)
|
141 |
+
elif file_extension in ['.jpg', '.jpeg', '.png']:
|
142 |
+
image = Image.open(file_uploaded)
|
143 |
+
text_content = pytesseract.image_to_string(image)
|
144 |
+
else:
|
145 |
+
st.error(f"Unsupported file format: {file_extension}")
|
146 |
+
return None
|
147 |
+
|
148 |
+
response = model.generate_content(f"{prompt}\n\nResume Text:\n{text_content}")
|
149 |
+
|
150 |
+
try:
|
151 |
+
response_text = response.text
|
152 |
+
json_start = response_text.find('{')
|
153 |
+
json_end = response_text.rfind('}') + 1
|
154 |
+
json_str = response_text[json_start:json_end]
|
155 |
+
|
156 |
+
result = json.loads(json_str)
|
157 |
+
total_exp = calculate_experience(result.get('work_experience', []))
|
158 |
+
result['total_years_experience'] = total_exp
|
159 |
+
|
160 |
+
return result
|
161 |
+
except json.JSONDecodeError as e:
|
162 |
+
st.error(f"Error parsing response: {str(e)}")
|
163 |
+
return None
|
164 |
+
|
165 |
+
except Exception as e:
|
166 |
+
st.error(f"Error processing resume: {str(e)}")
|
167 |
+
return None
|
168 |
+
|
169 |
+
def format_education(edu):
|
170 |
+
"""Format education details for display."""
|
171 |
+
parts = []
|
172 |
+
if edu.get('degree'):
|
173 |
+
parts.append(edu['degree'])
|
174 |
+
if edu.get('field'):
|
175 |
+
parts.append(f"in {edu['field']}")
|
176 |
+
if edu.get('institution'):
|
177 |
+
parts.append(f"from {edu['institution']}")
|
178 |
+
if edu.get('year'):
|
179 |
+
parts.append(f"({edu['year']})")
|
180 |
+
if edu.get('gpa') and edu['gpa'].strip():
|
181 |
+
parts.append(f"- GPA: {edu['gpa']}")
|
182 |
+
return " ".join(parts)
|
183 |
+
|
184 |
+
def main():
|
185 |
+
st.title("Resume Parser")
|
186 |
+
st.write("Upload a resume (PDF, DOCX, or Image) to extract information")
|
187 |
+
|
188 |
+
# Get API key from secrets or user input
|
189 |
+
api_key = st.secrets["GEMINI_API_KEY"] if "GEMINI_API_KEY" in st.secrets else st.text_input("Enter Gemini API Key", type="password")
|
190 |
+
|
191 |
+
uploaded_file = st.file_uploader("Choose a resume file", type=["pdf", "docx", "doc", "jpg", "jpeg", "png"])
|
192 |
+
|
193 |
+
if uploaded_file and api_key:
|
194 |
+
with st.spinner('Analyzing resume...'):
|
195 |
+
result = parse_resume(uploaded_file, api_key)
|
196 |
+
|
197 |
+
if result:
|
198 |
+
st.subheader("Extracted Information")
|
199 |
+
|
200 |
+
# Display summary in a text area
|
201 |
+
st.text_area("Summary", result.get('summary', 'Not found'), height=100)
|
202 |
+
|
203 |
+
# Display personal information
|
204 |
+
col1, col2, col3 = st.columns(3)
|
205 |
+
with col1:
|
206 |
+
st.write("*Name:*", result.get('name', 'Not found'))
|
207 |
+
with col2:
|
208 |
+
st.write("*Email:*", result.get('email', 'Not found'))
|
209 |
+
with col3:
|
210 |
+
st.write("*Phone:*", result.get('phone', 'Not found'))
|
211 |
+
|
212 |
+
# Display total experience
|
213 |
+
total_exp = result.get('total_years_experience', 0)
|
214 |
+
exp_text = f"{total_exp:.1f} years" if total_exp >= 1 else f"{total_exp * 12:.0f} months"
|
215 |
+
st.write("*Total Experience:*", exp_text)
|
216 |
+
|
217 |
+
# Display education
|
218 |
+
st.subheader("Education")
|
219 |
+
if result.get('education'):
|
220 |
+
for edu in result['education']:
|
221 |
+
st.write(f"- {format_education(edu)}")
|
222 |
+
else:
|
223 |
+
st.write("No education information found")
|
224 |
+
|
225 |
+
# Display work experience
|
226 |
+
st.subheader("Work Experience")
|
227 |
+
if result.get('work_experience'):
|
228 |
+
for exp in result['work_experience']:
|
229 |
+
duration = f" ({exp.get('duration', 'Duration not specified')})" if exp.get('duration') else ""
|
230 |
+
st.write(f"- {exp.get('position', 'Role not found')} at {exp.get('company', 'Company not found')}{duration}")
|
231 |
+
else:
|
232 |
+
st.write("No work experience found")
|
233 |
+
|
234 |
+
# Display Skills
|
235 |
+
st.subheader("Skills:")
|
236 |
+
if result.get('skills'):
|
237 |
+
for skill in result['skills']:
|
238 |
+
st.write(f"- {skill}")
|
239 |
+
else:
|
240 |
+
st.write("- No skills found")
|
241 |
+
|
242 |
+
# Display LinkedIn profile
|
243 |
+
st.write("*LinkedIn Profile:*", result.get('linkedin', 'Not found'))
|
244 |
+
|
245 |
+
if __name__ == "__main__":
|
246 |
+
main()
|