Spaces:
Runtime error
Runtime error
Commit
·
9d92eeb
1
Parent(s):
9a229f8
- __pycache__/main.cpython-310.pyc +0 -0
- app.py +8 -2
- main.py +40 -15
__pycache__/main.cpython-310.pyc
CHANGED
Binary files a/__pycache__/main.cpython-310.pyc and b/__pycache__/main.cpython-310.pyc differ
|
|
app.py
CHANGED
@@ -95,6 +95,12 @@ if st.session_state.open_router_key and st.session_state.openai_api_key:
|
|
95 |
# Choose execution mode
|
96 |
execution_mode = st.radio("Execution Mode:", ["Sequential", "Multithreaded"])
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
# Benchmark Execution
|
99 |
if st.button("Start Benchmark"):
|
100 |
if not selected_questions:
|
@@ -115,9 +121,9 @@ if st.session_state.open_router_key and st.session_state.openai_api_key:
|
|
115 |
|
116 |
# ... (benchmarking logic using the chosen execution mode)
|
117 |
if execution_mode == "Sequential":
|
118 |
-
question_results = benchmark_model_sequential(model_name,
|
119 |
else: # Multithreaded
|
120 |
-
question_results = benchmark_model_multithreaded(model_name,
|
121 |
|
122 |
results.extend(question_results)
|
123 |
|
|
|
95 |
# Choose execution mode
|
96 |
execution_mode = st.radio("Execution Mode:", ["Sequential", "Multithreaded"])
|
97 |
|
98 |
+
# If multithreaded, allow user to configure thread pool size
|
99 |
+
if execution_mode == "Multithreaded":
|
100 |
+
max_threads = st.slider("Maximum Number of Threads:", 1, 10, 4) # Default to 4 threads
|
101 |
+
else:
|
102 |
+
max_threads = None # For sequential mode
|
103 |
+
|
104 |
# Benchmark Execution
|
105 |
if st.button("Start Benchmark"):
|
106 |
if not selected_questions:
|
|
|
121 |
|
122 |
# ... (benchmarking logic using the chosen execution mode)
|
123 |
if execution_mode == "Sequential":
|
124 |
+
question_results = benchmark_model_sequential(model_name, selected_questions, st.session_state.open_router_key, st.session_state.openai_api_key)
|
125 |
else: # Multithreaded
|
126 |
+
question_results = benchmark_model_multithreaded(model_name, selected_questions, st.session_state.open_router_key, st.session_state.openai_api_key, max_threads)
|
127 |
|
128 |
results.extend(question_results)
|
129 |
|
main.py
CHANGED
@@ -6,7 +6,8 @@ from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
6 |
import threading
|
7 |
import streamlit as st # Import Streamlit
|
8 |
|
9 |
-
|
|
|
10 |
start_time = time.time()
|
11 |
st.write(f"<span style='color:red'>{question}</span>", unsafe_allow_html=True) # Display question in red
|
12 |
previous_answers = []
|
@@ -16,44 +17,60 @@ def process_question(question, model_name, open_router_key, openai_api_key):
|
|
16 |
while True:
|
17 |
gen_prompt = create_gen_prompt(question, previous_answers)
|
18 |
try:
|
19 |
-
new_answer = chat_with_model(prompt=gen_prompt, model=model_name, open_router_key=open_router_key,
|
|
|
20 |
except Exception as e:
|
21 |
-
st.write(f"<span style='color:red'>Error generating answer: {str(e)}</span>",
|
|
|
22 |
break
|
23 |
|
24 |
judge_prompt = create_judge_prompt(question, new_answer)
|
25 |
judge = "openai/gpt-4o-mini"
|
26 |
try:
|
27 |
-
judge_response = chat_with_model(prompt=judge_prompt, model=judge, open_router_key=open_router_key,
|
|
|
28 |
except Exception as e:
|
29 |
-
st.write(f"<span style='color:red'>Error getting judge response: {str(e)}</span>",
|
|
|
30 |
break
|
31 |
|
32 |
coherence_score = int(judge_response.split("<coherence_score>")[1].split("</coherence_score>")[0])
|
33 |
|
34 |
if coherence_score <= 3:
|
35 |
-
st.write("<span style='color:yellow'>Output is incoherent. Moving to next question.</span>",
|
|
|
36 |
break
|
37 |
|
38 |
novelty_score = get_novelty_score(new_answer, previous_answers, openai_api_key)
|
39 |
|
40 |
if novelty_score < 0.1:
|
41 |
-
st.write("<span style='color:yellow'>Output is redundant. Moving to next question.</span>",
|
|
|
42 |
break
|
43 |
|
44 |
st.write(f"**New Answer:**\n{new_answer}")
|
45 |
-
st.write(f"<span style='color:green'>Coherence Score: {coherence_score}</span>",
|
|
|
46 |
st.write(f"**Novelty Score:** {novelty_score}")
|
47 |
|
48 |
previous_answers.append(new_answer)
|
49 |
question_novelty += novelty_score
|
50 |
|
51 |
except Exception as e:
|
52 |
-
st.write(f"<span style='color:red'>Unexpected error processing question: {str(e)}</span>",
|
|
|
53 |
|
54 |
time_taken = time.time() - start_time
|
55 |
-
st.write(f"<span style='color:blue'>Total novelty score for this question: {question_novelty}</span>",
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
return question_novelty, [
|
59 |
{
|
@@ -86,14 +103,22 @@ def get_novelty_score(new_answer: str, previous_answers: list, openai_api_key):
|
|
86 |
return novelty
|
87 |
|
88 |
|
89 |
-
def benchmark_model_multithreaded(model_name, questions, open_router_key, openai_api_key):
|
90 |
novelty_score = 0
|
91 |
print_lock = threading.Lock() # Lock for thread-safe printing
|
92 |
results = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
-
with ThreadPoolExecutor(max_workers=
|
95 |
future_to_question = {executor.submit(
|
96 |
-
process_question, question, model_name, open_router_key, openai_api_key): question for question in questions}
|
97 |
|
98 |
for future in as_completed(future_to_question):
|
99 |
question = future_to_question[future]
|
@@ -117,7 +142,7 @@ def benchmark_model_sequential(model_name, questions, open_router_key, openai_ap
|
|
117 |
results = []
|
118 |
|
119 |
for i, question in enumerate(questions):
|
120 |
-
question_novelty, question_results = process_question(question, model_name, open_router_key, openai_api_key)
|
121 |
novelty_score += question_novelty
|
122 |
results.extend(question_results)
|
123 |
st.write(f"<span style='color:yellow'>Total novelty score across processed questions: {novelty_score}</span>", unsafe_allow_html=True) # Display progress after each question
|
|
|
6 |
import threading
|
7 |
import streamlit as st # Import Streamlit
|
8 |
|
9 |
+
|
10 |
+
def process_question(question, model_name, open_router_key, openai_api_key, progress_lock, completed_questions, total_questions):
|
11 |
start_time = time.time()
|
12 |
st.write(f"<span style='color:red'>{question}</span>", unsafe_allow_html=True) # Display question in red
|
13 |
previous_answers = []
|
|
|
17 |
while True:
|
18 |
gen_prompt = create_gen_prompt(question, previous_answers)
|
19 |
try:
|
20 |
+
new_answer = chat_with_model(prompt=gen_prompt, model=model_name, open_router_key=open_router_key,
|
21 |
+
openai_api_key=openai_api_key)
|
22 |
except Exception as e:
|
23 |
+
st.write(f"<span style='color:red'>Error generating answer: {str(e)}</span>",
|
24 |
+
unsafe_allow_html=True) # Display error in red
|
25 |
break
|
26 |
|
27 |
judge_prompt = create_judge_prompt(question, new_answer)
|
28 |
judge = "openai/gpt-4o-mini"
|
29 |
try:
|
30 |
+
judge_response = chat_with_model(prompt=judge_prompt, model=judge, open_router_key=open_router_key,
|
31 |
+
openai_api_key=openai_api_key)
|
32 |
except Exception as e:
|
33 |
+
st.write(f"<span style='color:red'>Error getting judge response: {str(e)}</span>",
|
34 |
+
unsafe_allow_html=True) # Display error in red
|
35 |
break
|
36 |
|
37 |
coherence_score = int(judge_response.split("<coherence_score>")[1].split("</coherence_score>")[0])
|
38 |
|
39 |
if coherence_score <= 3:
|
40 |
+
st.write("<span style='color:yellow'>Output is incoherent. Moving to next question.</span>",
|
41 |
+
unsafe_allow_html=True) # Display warning in yellow
|
42 |
break
|
43 |
|
44 |
novelty_score = get_novelty_score(new_answer, previous_answers, openai_api_key)
|
45 |
|
46 |
if novelty_score < 0.1:
|
47 |
+
st.write("<span style='color:yellow'>Output is redundant. Moving to next question.</span>",
|
48 |
+
unsafe_allow_html=True) # Display warning in yellow
|
49 |
break
|
50 |
|
51 |
st.write(f"**New Answer:**\n{new_answer}")
|
52 |
+
st.write(f"<span style='color:green'>Coherence Score: {coherence_score}</span>",
|
53 |
+
unsafe_allow_html=True) # Display coherence score in green
|
54 |
st.write(f"**Novelty Score:** {novelty_score}")
|
55 |
|
56 |
previous_answers.append(new_answer)
|
57 |
question_novelty += novelty_score
|
58 |
|
59 |
except Exception as e:
|
60 |
+
st.write(f"<span style='color:red'>Unexpected error processing question: {str(e)}</span>",
|
61 |
+
unsafe_allow_html=True) # Display error in red
|
62 |
|
63 |
time_taken = time.time() - start_time
|
64 |
+
st.write(f"<span style='color:blue'>Total novelty score for this question: {question_novelty}</span>",
|
65 |
+
unsafe_allow_html=True) # Display novelty score in blue
|
66 |
+
st.write(f"<span style='color:blue'>Time taken: {time_taken} seconds</span>",
|
67 |
+
unsafe_allow_html=True) # Display time taken in blue
|
68 |
+
|
69 |
+
# Update progress
|
70 |
+
with progress_lock:
|
71 |
+
completed_questions += 1
|
72 |
+
progress = completed_questions / total_questions
|
73 |
+
st.progress(progress) # Update the progress bar
|
74 |
|
75 |
return question_novelty, [
|
76 |
{
|
|
|
103 |
return novelty
|
104 |
|
105 |
|
106 |
+
def benchmark_model_multithreaded(model_name, questions, open_router_key, openai_api_key, max_threads=None):
|
107 |
novelty_score = 0
|
108 |
print_lock = threading.Lock() # Lock for thread-safe printing
|
109 |
results = []
|
110 |
+
completed_questions = 0 # Shared variable to track progress
|
111 |
+
progress_lock = threading.Lock() # Lock for protecting completed_questions
|
112 |
+
|
113 |
+
# Use max_threads if provided, otherwise default to the number of questions
|
114 |
+
if max_threads is None:
|
115 |
+
max_workers = len(questions)
|
116 |
+
else:
|
117 |
+
max_workers = max_threads
|
118 |
|
119 |
+
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
120 |
future_to_question = {executor.submit(
|
121 |
+
process_question, question, model_name, open_router_key, openai_api_key, progress_lock, completed_questions, len(questions)): question for question in questions}
|
122 |
|
123 |
for future in as_completed(future_to_question):
|
124 |
question = future_to_question[future]
|
|
|
142 |
results = []
|
143 |
|
144 |
for i, question in enumerate(questions):
|
145 |
+
question_novelty, question_results = process_question(question, model_name, open_router_key, openai_api_key, threading.Lock(), i, len(questions))
|
146 |
novelty_score += question_novelty
|
147 |
results.extend(question_results)
|
148 |
st.write(f"<span style='color:yellow'>Total novelty score across processed questions: {novelty_score}</span>", unsafe_allow_html=True) # Display progress after each question
|