ai-dungeon / helper.py
prgrmc's picture
add prompt guard for user prompt and safety check for LLM generated content after user feedback, add api key for prompt guard
fd206ac
raw
history blame
48.8 kB
import os
import re
from dotenv import load_dotenv, find_dotenv
import json
import gradio as gr
import torch # first import torch then transformers
from torch.nn.functional import softmax
from transformers import AutoModelForSequenceClassification
from huggingface_hub import InferenceClient
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForCausalLM
import logging
import psutil
from typing import Dict, Any, Optional, Tuple
# Add model caching and optimization
from functools import lru_cache
import torch.nn as nn
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def get_available_memory():
"""Get available GPU and system memory"""
gpu_memory = None
if torch.cuda.is_available():
gpu_memory = torch.cuda.get_device_properties(0).total_memory
system_memory = psutil.virtual_memory().available
return gpu_memory, system_memory
def load_env():
_ = load_dotenv(find_dotenv())
def get_huggingface_api_key():
load_env()
huggingface_api_key = os.getenv("HUGGINGFACE_API_KEY")
if not huggingface_api_key:
logging.error("HUGGINGFACE_API_KEY not found in environment variables")
raise ValueError("HUGGINGFACE_API_KEY not found in environment variables")
return huggingface_api_key
def get_huggingface_inference_key():
load_env()
huggingface_inference_key = os.getenv("HUGGINGFACE_INFERENCE_KEY")
if not huggingface_inference_key:
logging.error("HUGGINGFACE_API_KEY not found in environment variables")
raise ValueError("HUGGINGFACE_API_KEY not found in environment variables")
return huggingface_inference_key
# Model configuration
MODEL_CONFIG = {
"main_model": {
# "name": "meta-llama/Llama-3.2-3B-Instruct",
# "name": "meta-llama/Llama-3.2-1B-Instruct", # to fit in cpu on hugging face space
"name": "meta-llama/Llama-3.2-1B", # to fit in cpu on hugging face space
# "name": "TinyLlama/TinyLlama-1.1B-Chat-v1.0", # to fit in cpu on hugging face space
# "name": "microsoft/phi-2",
# "dtype": torch.bfloat16,
"dtype": torch.float32, # Use float32 for CPU
"max_length": 512,
"device": "cuda" if torch.cuda.is_available() else "cpu",
},
"safety_model": {
"name": "meta-llama/Llama-Guard-3-1B",
# "dtype": torch.bfloat16,
"dtype": torch.float32, # Use float32 for CPU
"max_length": 256,
"device": "cuda" if torch.cuda.is_available() else "cpu",
"max_tokens": 500,
},
}
PROMPT_GUARD_CONFIG = {
"model_id": "meta-llama/Prompt-Guard-86M",
"temperature": 1.0,
"jailbreak_threshold": 0.5,
"injection_threshold": 0.9,
"device": "cpu",
"safe_commands": [
"look around",
"investigate",
"explore",
"search",
"examine",
"take",
"use",
"go",
"walk",
"continue",
"help",
"inventory",
"quest",
"status",
"map",
"talk",
"fight",
"run",
"hide",
],
"max_length": 512,
}
def initialize_prompt_guard():
"""Initialize Prompt Guard model"""
try:
api_key = get_huggingface_api_key()
tokenizer = AutoTokenizer.from_pretrained(
PROMPT_GUARD_CONFIG["model_id"], api_key=api_key
)
model = AutoModelForSequenceClassification.from_pretrained(
PROMPT_GUARD_CONFIG["model_id"], api_key=api_key
)
return model, tokenizer
except Exception as e:
logger.error(f"Failed to initialize Prompt Guard: {e}")
raise
def get_class_probabilities(text: str, guard_model, guard_tokenizer) -> torch.Tensor:
"""Evaluate model probabilities with temperature scaling"""
try:
inputs = guard_tokenizer(
text,
return_tensors="pt",
padding=True,
truncation=True,
max_length=PROMPT_GUARD_CONFIG["max_length"],
).to(PROMPT_GUARD_CONFIG["device"])
with torch.no_grad():
logits = guard_model(**inputs).logits
scaled_logits = logits / PROMPT_GUARD_CONFIG["temperature"]
return softmax(scaled_logits, dim=-1)
except Exception as e:
logger.error(f"Error getting class probabilities: {e}")
return None
def get_jailbreak_score(text: str, guard_model, guard_tokenizer) -> float:
"""Get jailbreak probability score"""
try:
probabilities = get_class_probabilities(text, guard_model, guard_tokenizer)
if probabilities is None:
return 1.0 # Fail safe
return probabilities[0, 2].item()
except Exception as e:
logger.error(f"Error getting jailbreak score: {e}")
return 1.0
def get_injection_score(text: str, guard_model, guard_tokenizer) -> float:
"""Get injection probability score"""
try:
probabilities = get_class_probabilities(text, guard_model, guard_tokenizer)
if probabilities is None:
return 1.0 # Fail safe
return (probabilities[0, 1] + probabilities[0, 2]).item()
except Exception as e:
logger.error(f"Error getting injection score: {e}")
return 1.0
# Initialize safety model pipeline
try:
# Initialize Prompt Guard
guard_model, guard_tokenizer = initialize_prompt_guard()
except Exception as e:
logger.error(f"Failed to initialize model: {str(e)}")
def is_prompt_safe(message: str) -> bool:
"""Enhanced safety check with Prompt Guard"""
try:
# Allow safe game commands
if any(cmd in message.lower() for cmd in PROMPT_GUARD_CONFIG["safe_commands"]):
logger.info("Message matched safe command pattern")
return True
# Get safety scores
jailbreak_score = get_jailbreak_score(message, guard_model, guard_tokenizer)
injection_score = get_injection_score(message, guard_model, guard_tokenizer)
logger.info(
f"Safety scores - Jailbreak: {jailbreak_score}, Injection: {injection_score}"
)
# Check against thresholds
is_safe = (
jailbreak_score
< PROMPT_GUARD_CONFIG["jailbreak_threshold"]
# and injection_score < PROMPT_GUARD_CONFIG["injection_threshold"] # Disable for now because injection is too strict and current prompt guard model seems malfunctioning for now.
)
logger.info(f"Final safety result: {is_safe}")
return is_safe
except Exception as e:
logger.error(f"Safety check failed: {e}")
return False
# def initialize_model_pipeline(model_name, force_cpu=False):
# """Initialize pipeline with memory management"""
# try:
# if force_cpu:
# device = -1
# else:
# device = MODEL_CONFIG["main_model"]["device"]
# api_key = get_huggingface_api_key()
# # Use 8-bit quantization for memory efficiency
# model = AutoModelForCausalLM.from_pretrained(
# model_name,
# load_in_8bit=False,
# torch_dtype=MODEL_CONFIG["main_model"]["dtype"],
# use_cache=True,
# device_map="auto",
# low_cpu_mem_usage=True,
# trust_remote_code=True,
# token=api_key, # Add token here
# )
# model.config.use_cache = True
# tokenizer = AutoTokenizer.from_pretrained(model_name, token=api_key)
# # Initialize pipeline
# logger.info(f"Initializing pipeline with device: {device}")
# generator = pipeline(
# "text-generation",
# model=model,
# tokenizer=tokenizer,
# # device=device,
# # temperature=0.7,
# model_kwargs={"low_cpu_mem_usage": True},
# )
# logger.info("Model Pipeline initialized successfully")
# return generator, tokenizer
# except ImportError as e:
# logger.error(f"Missing required package: {str(e)}")
# raise
# except Exception as e:
# logger.error(f"Failed to initialize pipeline: {str(e)}")
# raise
# # Initialize model pipeline
# try:
# # Use a smaller model for testing
# # model_name = "meta-llama/Meta-Llama-3-8B-Instruct"
# # model_name = "google/gemma-2-2b" # Start with a smaller model
# # model_name = "microsoft/phi-2"
# # model_name = "meta-llama/Llama-3.2-1B-Instruct"
# # model_name = "meta-llama/Llama-3.2-3B-Instruct"
# model_name = MODEL_CONFIG["main_model"]["name"]
# # Initialize the pipeline with memory management
# generator, tokenizer = initialize_model_pipeline(model_name)
# except Exception as e:
# logger.error(f"Failed to initialize model: {str(e)}")
# # Fallback to CPU if GPU initialization fails
# try:
# logger.info("Attempting CPU fallback...")
# generator, tokenizer = initialize_model_pipeline(model_name, force_cpu=True)
# except Exception as e:
# logger.error(f"CPU fallback failed: {str(e)}")
# raise
def initialize_inference_client():
"""Initialize HuggingFace Inference Client"""
try:
inference_key = get_huggingface_inference_key()
client = InferenceClient(api_key=inference_key)
logger.info("Inference Client initialized successfully")
return client
except Exception as e:
logger.error(f"Failed to initialize Inference Client: {e}")
raise
def load_world(filename):
with open(filename, "r") as f:
return json.load(f)
# Define system_prompt and model
system_prompt = """You are an AI Game master. Your job is to write what happens next in a player's adventure game.
CRITICAL Rules:
- Write EXACTLY 3 sentences maximum
- Use daily English language
- Start with "You "
- Don't use 'Elara' or 'she/he', only use 'you'
- Use only second person ("you")
- Never include dialogue after the response
- Never continue with additional actions or responses
- Never add follow-up questions or choices
- Never include 'User:' or 'Assistant:' in response
- Never include any note or these kinds of sentences: 'Note from the game master'
- Never use ellipsis (...)
- Never include 'What would you like to do?' or similar prompts
- Always finish with one real response
- Never use 'Your turn' or or anything like conversation starting prompts
- Always end the response with a period(.)"""
def get_game_state(inventory: Dict = None) -> Dict[str, Any]:
"""Initialize game state with safe defaults and quest system"""
try:
# Load world data
world = load_world("shared_data/Ethoria.json")
character = world["kingdoms"]["Valdor"]["towns"]["Ravenhurst"]["npcs"][
"Elara Brightshield"
]
print(f"character in get_game_state: {character}")
game_state = {
"name": world["name"],
"world": world["description"],
"kingdom": world["kingdoms"]["Valdor"]["description"],
"town_name": world["kingdoms"]["Valdor"]["towns"]["Ravenhurst"]["name"],
"town": world["kingdoms"]["Valdor"]["towns"]["Ravenhurst"]["description"],
"character_name": character["name"],
"character_description": character["description"],
"start": world["start"],
"inventory": inventory
or {
"cloth pants": 1,
"cloth shirt": 1,
"goggles": 1,
"leather bound journal": 1,
"gold": 5,
},
"player": None,
"dungeon": None,
"current_quest": None,
"completed_quests": [],
"exp": 0,
"level": 1,
"reputation": {"Valdor": 0, "Ravenhurst": 0},
}
# print(f"game_state in get_game_state: {game_state}")
# Extract required data with fallbacks
return game_state
except (FileNotFoundError, KeyError, json.JSONDecodeError) as e:
logger.error(f"Error loading world data: {e}")
# Provide default values if world loading fails
return {
"world": "Ethoria is a realm of seven kingdoms, each founded on distinct moral principles.",
"kingdom": "Valdor, the Kingdom of Courage",
"town": "Ravenhurst, a town of skilled hunters and trappers",
"character_name": "Elara Brightshield",
"character_description": "A sturdy warrior with shining silver armor",
"start": "Your journey begins in the mystical realm of Ethoria...",
"inventory": inventory
or {
"cloth pants": 1,
"cloth shirt": 1,
"goggles": 1,
"leather bound journal": 1,
"gold": 5,
},
"player": None,
"dungeon": None,
"current_quest": None,
"completed_quests": [],
"exp": 0,
"level": 1,
"reputation": {"Valdor": 0, "Ravenhurst": 0},
}
def generate_dynamic_quest(game_state: Dict) -> Dict:
"""Generate varied quests based on progress and level"""
completed = len(game_state.get("completed_quests", []))
level = game_state.get("level", 1)
# Quest templates by type
quest_types = {
"combat": [
{
"title": "The Beast's Lair",
"description": "A fearsome {creature} has been terrorizing the outskirts of Ravenhurst.",
"objective": "Hunt down and defeat the {creature}.",
"creatures": [
"shadow wolf",
"frost bear",
"ancient wyrm",
"spectral tiger",
],
},
],
"exploration": [
{
"title": "Lost Secrets",
"description": "Rumors speak of an ancient {location} containing powerful artifacts.",
"objective": "Explore the {location} and uncover its secrets.",
"locations": [
"crypt",
"temple ruins",
"abandoned mine",
"forgotten library",
],
},
],
"mystery": [
{
"title": "Dark Omens",
"description": "The {sign} has appeared, marking the rise of an ancient power.",
"objective": "Investigate the meaning of the {sign}.",
"signs": [
"blood moon",
"mysterious runes",
"spectral lights",
"corrupted wildlife",
],
},
],
}
# Select quest type and template
quest_type = list(quest_types.keys())[completed % len(quest_types)]
template = quest_types[quest_type][0] # Could add more templates per type
# Fill in dynamic elements
if quest_type == "combat":
creature = template["creatures"][level % len(template["creatures"])]
title = template["title"]
description = template["description"].format(creature=creature)
objective = template["objective"].format(creature=creature)
elif quest_type == "exploration":
location = template["locations"][level % len(template["locations"])]
title = template["title"]
description = template["description"].format(location=location)
objective = template["objective"].format(location=location)
else: # mystery
sign = template["signs"][level % len(template["signs"])]
title = template["title"]
description = template["description"].format(sign=sign)
objective = template["objective"].format(sign=sign)
return {
"id": f"quest_{quest_type}_{completed}",
"title": title,
"description": f"{description} {objective}",
"exp_reward": 150 + (level * 50),
"status": "active",
"triggers": ["investigate", "explore", quest_type, "search"],
"completion_text": f"You've made progress in understanding the growing darkness.",
"next_quest_hint": "More mysteries await in the shadows of Ravenhurst.",
}
def generate_next_quest(game_state: Dict) -> Dict:
"""Generate next quest based on progress"""
completed = len(game_state.get("completed_quests", []))
level = game_state.get("level", 1)
quest_chain = [
{
"id": "mist_investigation",
"title": "Investigate the Mist",
"description": "Strange mists have been gathering around Ravenhurst. Investigate their source.",
"exp_reward": 100,
"status": "active",
"triggers": ["mist", "investigate", "explore"],
"completion_text": "As you investigate the mist, you discover ancient runes etched into nearby stones.",
"next_quest_hint": "The runes seem to point to an old hunting trail.",
},
{
"id": "hunters_trail",
"title": "The Hunter's Trail",
"description": "Local hunters have discovered strange tracks in the forest. Follow them to their source.",
"exp_reward": 150,
"status": "active",
"triggers": ["tracks", "follow", "trail"],
"completion_text": "The tracks lead to an ancient well, where you hear strange whispers.",
"next_quest_hint": "The whispers seem to be coming from deep within the well.",
},
{
"id": "dark_whispers",
"title": "Whispers in the Dark",
"description": "Mysterious whispers echo from the old well. Investigate their source.",
"exp_reward": 200,
"status": "active",
"triggers": ["well", "whispers", "listen"],
"completion_text": "You discover an ancient seal at the bottom of the well.",
"next_quest_hint": "The seal bears markings of an ancient evil.",
},
]
# Generate dynamic quests after initial chain
if completed >= len(quest_chain):
return generate_dynamic_quest(game_state)
# current_quest_index = min(completed, len(quest_chain) - 1)
# return quest_chain[current_quest_index]
return quest_chain[completed]
def check_quest_completion(message: str, game_state: Dict) -> Tuple[bool, str]:
"""Check quest completion and handle progression"""
if not game_state.get("current_quest"):
return False, ""
quest = game_state["current_quest"]
triggers = quest.get("triggers", [])
if any(trigger in message.lower() for trigger in triggers):
# Award experience
exp_reward = quest.get("exp_reward", 100)
game_state["exp"] += exp_reward
# Update player level if needed
while game_state["exp"] >= 100 * game_state["level"]:
game_state["level"] += 1
game_state["player"].level = (
game_state["level"] if game_state.get("player") else game_state["level"]
)
level_up_text = (
f"\nLevel Up! You are now level {game_state['level']}!"
if game_state["exp"] >= 100 * (game_state["level"] - 1)
else ""
)
# Store completed quest
game_state["completed_quests"].append(quest)
# Generate next quest
next_quest = generate_next_quest(game_state)
game_state["current_quest"] = next_quest
# Update status display
if game_state.get("player"):
game_state["player"].exp = game_state["exp"]
game_state["player"].level = game_state["level"]
# Build completion message
completion_msg = f"""
Quest Complete: {quest['title']}! (+{exp_reward} exp){level_up_text}
{quest.get('completion_text', '')}
New Quest: {next_quest['title']}
{next_quest['description']}
{next_quest.get('next_quest_hint', '')}"""
return True, completion_msg
return False, ""
def parse_items_from_story(text: str) -> Dict[str, int]:
"""Extract item changes from story text with improved pattern matching"""
items = {}
# Skip parsing if text starts with common narrative phrases
skip_patterns = [
"you see",
"you find yourself",
"you are",
"you stand",
"you hear",
"you feel",
]
if any(text.lower().startswith(pattern) for pattern in skip_patterns):
return items
# Common item keywords and patterns
gold_pattern = r"(\d+)\s*gold(?:\s+coins?)?"
items_pattern = r"(?:receive|find|given|obtain|pick up|grab)\s+(?:a|an|the)?\s*(\d+)?\s*([\w\s]+?)"
try:
# Find gold amounts
gold_matches = re.findall(gold_pattern, text.lower())
if gold_matches:
items["gold"] = sum(int(x) for x in gold_matches)
# Find other items
item_matches = re.findall(items_pattern, text.lower())
for count, item in item_matches:
# Validate item name
item = item.strip()
if len(item) > 2 and not any( # Minimum length check
skip in item for skip in ["yourself", "you", "door", "wall", "floor"]
): # Skip common words
count = int(count) if count else 1
if item in items:
items[item] += count
else:
items[item] = count
return items
except Exception as e:
logger.error(f"Error parsing items from story: {e}")
return {}
def update_game_inventory(game_state: Dict, story_text: str) -> Tuple[str, list]:
"""Update inventory and return message and updated inventory data"""
try:
items = parse_items_from_story(story_text)
update_msg = ""
# Update inventory
for item, count in items.items():
if item in game_state["inventory"]:
game_state["inventory"][item] += count
else:
game_state["inventory"][item] = count
update_msg += f"\nReceived: {count} {item}"
# Create updated inventory data for display
inventory_data = [
[item, count] for item, count in game_state["inventory"].items()
]
return update_msg, inventory_data
except Exception as e:
logger.error(f"Error updating inventory: {e}")
return "", []
def extract_response_after_action(full_text: str, action: str) -> str:
"""Extract response text that comes after the user action line"""
try:
if not full_text: # Add null check
logger.error("Received empty response from model")
return "You look around carefully."
# Split into lines
lines = full_text.split("\n")
# Find index of line containing user action
action_line_index = -1
for i, line in enumerate(lines):
if action.lower() in line.lower(): # More flexible matching
action_line_index = i
break
if action_line_index >= 0:
# Get all lines after the action line
response_lines = lines[action_line_index + 1 :]
response = " ".join(line.strip() for line in response_lines if line.strip())
# Clean up any remaining markers
response = response.split("user:")[0].strip()
response = response.split("system:")[0].strip()
response = response.split("assistant:")[0].strip()
return response if response else "You look around carefully."
return "You look around carefully." # Default response
except Exception as e:
logger.error(f"Error extracting response: {e}")
return "You look around carefully."
def run_action(message: str, history: list, game_state: Dict) -> str:
"""Process game actions and generate responses with quest handling"""
try:
initial_quest = generate_next_quest(game_state)
game_state["current_quest"] = initial_quest
# Handle start game command
if message.lower() == "start game":
start_response = f"""Welcome to {game_state['name']}. {game_state['world']}
{game_state['start']}
You are currently in {game_state['town_name']}, {game_state['town']}.
{game_state['town_name']} is a city in {game_state['kingdom']}.
Current Quest: {initial_quest['title']}
{initial_quest['description']}
What would you like to do?"""
return start_response
# Verify game state
if not isinstance(game_state, dict):
logger.error(f"Invalid game state type: {type(game_state)}")
return "Error: Invalid game state"
# Safety check with Prompt Guard
if not is_prompt_safe(message):
logger.warning("Unsafe content detected in user prompt")
return "I cannot process that request for safety reasons."
# logger.info(f"Processing action with game state: {game_state}")
logger.info(f"Processing action with game state")
world_info = f"""World: {game_state['world']}
Kingdom: {game_state['kingdom']}
Town: {game_state['town']}
Character: {game_state['character_name']}
Current Quest: {game_state["current_quest"]['title']}
Quest Objective: {game_state["current_quest"]['description']}
Inventory: {json.dumps(game_state['inventory'])}"""
# # Enhanced system prompt for better response formatting
# enhanced_prompt = f"""{system_prompt}
# Additional Rules:
# - Always start responses with 'You ', 'You see' or 'You hear' or 'You feel'
# - Use ONLY second person perspective ('you', not 'Elara' or 'she/he')
# - Describe immediate surroundings and sensations
# - Keep responses focused on the player's direct experience"""
# messages = [
# {"role": "system", "content": system_prompt},
# {"role": "user", "content": world_info},
# ]
# Properly formatted messages for API
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": world_info},
{
"role": "assistant",
"content": "I understand the game world and will help guide your adventure.",
},
{"role": "user", "content": message},
]
# # Format chat history
# if history:
# for h in history:
# if isinstance(h, tuple):
# messages.append({"role": "assistant", "content": h[0]})
# messages.append({"role": "user", "content": h[1]})
# Add history in correct alternating format
if history:
# for h in history[-3:]: # Last 3 exchanges
for h in history:
if isinstance(h, tuple):
messages.append({"role": "user", "content": h[0]})
messages.append({"role": "assistant", "content": h[1]})
# messages.append({"role": "user", "content": message})
# Convert messages to string format for pipeline
prompt = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages])
logger.info("Generating response...")
## Generate response
# model_output = generator(
# prompt,
# max_new_tokens=len(tokenizer.encode(message))
# + 120, # Set max_new_tokens based on input length
# num_return_sequences=1,
# # temperature=0.7, # More creative but still focused
# repetition_penalty=1.2,
# pad_token_id=tokenizer.eos_token_id,
# )
# # Check for None response
# if not model_output or not isinstance(model_output, list):
# logger.error(f"Invalid model output: {model_output}")
# print(f"Invalid model output: {model_output}")
# return "You look around carefully."
# if not model_output[0] or not isinstance(model_output[0], dict):
# logger.error(f"Invalid response format: {type(model_output[0])}")
# return "You look around carefully."
# # Extract and clean response
# full_response = model_output[0]["generated_text"]
# if not full_response:
# logger.error("Empty response from model")
# return "You look around carefully."
# print(f"Full response in run_action: {full_response}")
# response = extract_response_after_action(full_response, message)
# print(f"Extracted response in run_action: {response}")
# # Convert to second person
# response = response.replace("Elara", "You")
# # # Format response
# # if not response.startswith("You"):
# # response = "You see " + response
# # Validate no cut-off sentences
# if response.rstrip().endswith(("you also", "meanwhile", "suddenly", "...")):
# response = response.rsplit(" ", 1)[0] # Remove last word
# # Ensure proper formatting
# response = response.rstrip("?").rstrip(".") + "."
# response = response.replace("...", ".")
# Initialize client and make API call
client = initialize_inference_client()
# Generate response using Inference API
completion = client.chat.completions.create(
model="mistralai/Mistral-7B-Instruct-v0.3", # Use inference API model
messages=messages,
max_tokens=520,
)
response = completion.choices[0].message.content
print(f"Generated response Inference API: {response}")
if not response:
return "You look around carefully."
# Safety check the responce using inference API
if not is_safe(response):
logger.warning("Unsafe content detected - blocking response")
return "This response was blocked for safety reasons."
# # Perform safety check before returning
# safe = is_safe(response)
# print(f"\nSafety Check Result: {'SAFE' if safe else 'UNSAFE'}")
# logger.info(f"Safety check result: {'SAFE' if safe else 'UNSAFE'}")
# if not safe:
# logging.warning("Unsafe content detected - blocking response")
# print("Unsafe content detected - Response blocked")
# return "This response was blocked for safety reasons."
# if safe:
# # Check for quest completion
# quest_completed, quest_message = check_quest_completion(message, game_state)
# if quest_completed:
# response += quest_message
# # Check for item updates
# inventory_update = update_game_inventory(game_state, response)
# if inventory_update:
# response += inventory_update
# Check for quest completion
quest_completed, quest_message = check_quest_completion(message, game_state)
if quest_completed:
response += quest_message
# Check for item-inventory updates
inventory_update, inventory_data = update_game_inventory(game_state, response)
if inventory_update:
response += inventory_update
print(f"Final response in run_action: {response}")
# Validate response
return response if response else "You look around carefully."
except KeyError as e:
logger.error(f"Missing required game state key: {e}")
return "Error: Game state is missing required information"
except Exception as e:
logger.error(f"Error generating response: {e}")
return (
"I apologize, but I had trouble processing that command. Please try again."
)
def update_game_status(game_state: Dict) -> Tuple[str, str]:
"""Generate updated status and quest display text"""
# Status text
status_text = (
f"Health: {game_state.get('player').health if game_state.get('player') else 100}/100\n"
f"Level: {game_state.get('level', 1)}\n"
f"Exp: {game_state.get('exp', 0)}/{100 * game_state.get('level', 1)}"
)
# Quest text
quest_text = "No active quest"
if game_state.get("current_quest"):
quest = game_state["current_quest"]
quest_text = f"{quest['title']}\n{quest['description']}"
if quest.get("next_quest_hint"):
quest_text += f"\n{quest['next_quest_hint']}"
return status_text, quest_text
def chat_response(message: str, chat_history: list, current_state: dict) -> tuple:
"""Process chat input and return response with updates"""
try:
if not message.strip():
return chat_history, current_state, "", "", [] # Add empty inventory data
# Get AI response
output = run_action(message, chat_history, current_state)
# Update chat history without status info
chat_history = chat_history or []
chat_history.append((message, output))
# Update status displays
status_text, quest_text = update_game_status(current_state)
# Get inventory updates
update_msg, inventory_data = update_game_inventory(current_state, output)
if update_msg:
output += update_msg
# Return tuple includes empty string to clear input
return chat_history, current_state, status_text, quest_text, inventory_data
except Exception as e:
logger.error(f"Error in chat response: {e}")
return chat_history, current_state, "", "", []
def start_game(main_loop, game_state, share=False):
"""Initialize and launch game interface"""
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# AI Dungeon Adventure")
# Game state storage
state = gr.State(game_state)
history = gr.State([])
with gr.Row():
# Game display
with gr.Column(scale=3):
chatbot = gr.Chatbot(
height=550,
placeholder="Type 'start game' to begin",
)
# Input area with submit button
with gr.Row():
txt = gr.Textbox(
show_label=False,
placeholder="What do you want to do?",
container=False,
)
submit_btn = gr.Button("Submit", variant="primary")
clear = gr.ClearButton([txt, chatbot])
# Enhanced Status panel
with gr.Column(scale=1):
with gr.Group():
gr.Markdown("### Character Status")
status = gr.Textbox(
label="Status",
value="Health: 100/100\nLevel: 1\nExp: 0/100",
interactive=False,
)
quest_display = gr.Textbox(
label="Current Quest",
value="No active quest",
interactive=False,
)
inventory_data = [
[item, count]
for item, count in game_state.get("inventory", {}).items()
]
inventory = gr.Dataframe(
value=inventory_data,
headers=["Item", "Quantity"],
label="Inventory",
interactive=False,
)
# Command suggestions
gr.Examples(
examples=[
"look around",
"continue the story",
"take sword",
"go to the forest",
],
inputs=txt,
)
# def chat_response(
# message: str, chat_history: list, current_state: dict
# ) -> tuple:
# """Process chat input and return response with updates"""
# try:
# if not message.strip():
# return chat_history, current_state, "" # Only clear input
# # Get AI response
# output = run_action(message, chat_history, current_state)
# # Update chat history
# chat_history = chat_history or []
# chat_history.append((message, output))
# # Update status if player exists
# # Update displays
# status_text = (
# f"Health: {current_state['player'].health}/{current_state['player'].max_health}\n"
# f"Level: {current_state['player'].level}\n"
# f"Exp: {current_state['player'].exp}/{current_state['player'].exp_to_level}"
# )
# quest_text = "No active quest"
# if current_state["current_quest"]:
# quest = current_state["current_quest"]
# quest_text = f"{quest['title']}\n{quest['description']}"
# # Update inventory display
# inv_data = [
# [item, count]
# for item, count in current_state.get("inventory", {}).items()
# ]
# return (chat_history, current_state, status_text, quest_text)
# except Exception as e:
# logger.error(f"Error in chat response: {e}")
# return (
# chat_history + [(message, "Error processing command")],
# current_state,
# status.value,
# quest_display.value,
# )
# # Connect components
# submit_btn.click(
# chat_response,
# inputs=[txt, chatbot, state],
# # outputs=[chatbot, state, txt],
# outputs=[chatbot, state, status, quest_display],
# show_progress=True,
# )
# # txt.submit(
# # chat_response,
# # [txt, chatbot, state],
# # [chatbot, state, txt],
# # show_progress=True,
# # )
# txt.submit(
# chat_response,
# inputs=[txt, chatbot, state],
# outputs=[chatbot, state, status, quest_display], # Keep status separate
# show_progress=True,
# )
def submit_action(message, history, state):
# Process response
new_history, new_state, status_text, quest_text, inventory_data = (
chat_response(message, history, state)
)
# Update inventory display
inventory.value = inventory_data
# Clear input
return "", new_history, new_state, status_text, quest_text, inventory
submit_btn.click(
submit_action,
inputs=[txt, chatbot, state],
outputs=[txt, chatbot, state, status, quest_display, inventory],
)
txt.submit(
submit_action,
inputs=[txt, chatbot, state],
outputs=[txt, chatbot, state, status, quest_display, inventory],
)
demo.launch(share=share)
everyone_content_policy = {
"policy": """O1: Violence and Hate.
Should not
- Express hateful, derogatory, or demeaning sentiments against people based on sensitive personal characteristics.
- Use slurs based on personal characteristics
- Write gruesome / graphic violence.
Can
- Write tame fantasy violence
O2: Sexual Content.
Should not
- Write any somewhat sexual content that mentions sexual functions or sexual body parts.
- Write any content that would be inappropriate for kids.
Can
- Write romantic content (including kissing, flirting etc...)
O3: Self-Harm.
Should not
- Encourage people to harm themselves.
- Romanticize or condone self-harm or suicide.
- Write story depicting suicide.
O4: Profanity.
Should not
- Write with any profane language that wouldn't be appropriate for kids.
Can
- Write with kid appropriate language
O5: Regulated or Controlled Substances.
Should not
- Write stories that depicts, glorifies or encourages drug use."""
}
def initialize_safety_client():
"""Initialize HuggingFace Inference Client"""
try:
inference_key = get_huggingface_inference_key()
# api_key = get_huggingface_api_key()
return InferenceClient(api_key=inference_key)
except Exception as e:
logger.error(f"Failed to initialize safety client: {e}")
raise
def is_safe(message: str) -> bool:
"""Check content safety using Inference API"""
try:
client = initialize_safety_client()
messages = [
{"role": "user", "content": f"Check if this content is safe:\n{message}"},
{
"role": "assistant",
"content": f"I will check if the content is safe based on this content policy:\n{everyone_content_policy['policy']}",
},
{"role": "user", "content": "Is it safe or unsafe?"},
]
try:
completion = client.chat.completions.create(
model=MODEL_CONFIG["safety_model"]["name"],
messages=messages,
max_tokens=MODEL_CONFIG["safety_model"]["max_tokens"],
temperature=0.1,
)
response = completion.choices[0].message.content.lower()
logger.info(f"Safety check response: {response}")
is_safe = "safe" in response and "unsafe" not in response
logger.info(f"Safety check result: {'SAFE' if is_safe else 'UNSAFE'}")
return is_safe
except Exception as api_error:
logger.error(f"API error: {api_error}")
# Fallback to allow common game commands
return any(
cmd in message.lower() for cmd in PROMPT_GUARD_CONFIG["safe_commands"]
)
except Exception as e:
logger.error(f"Safety check failed: {e}")
return False
# def init_safety_model(model_name, force_cpu=False):
# """Initialize safety checking model with optimized memory usage"""
# try:
# if force_cpu:
# device = -1
# else:
# device = MODEL_CONFIG["safety_model"]["device"]
# # model_id = "meta-llama/Llama-Guard-3-8B"
# # model_id = "meta-llama/Llama-Guard-3-1B"
# api_key = get_huggingface_api_key()
# safety_model = AutoModelForCausalLM.from_pretrained(
# model_name,
# token=api_key,
# torch_dtype=MODEL_CONFIG["safety_model"]["dtype"],
# use_cache=True,
# device_map="auto",
# )
# safety_model.config.use_cache = True
# safety_tokenizer = AutoTokenizer.from_pretrained(model_name, token=api_key)
# # Set pad token explicitly
# safety_tokenizer.pad_token = safety_tokenizer.eos_token
# logger.info(f"Safety model initialized successfully on {device}")
# return safety_model, safety_tokenizer
# except Exception as e:
# logger.error(f"Failed to initialize safety model: {e}")
# raise
# # Initialize safety model pipeline
# try:
# safety_model_name = MODEL_CONFIG["safety_model"]["name"]
# api_key = get_huggingface_api_key()
# # Initialize the pipeline with memory management
# safety_model, safety_tokenizer = init_safety_model(safety_model_name)
# except Exception as e:
# logger.error(f"Failed to initialize model: {str(e)}")
# # Fallback to CPU if GPU initialization fails
# try:
# logger.info("Attempting CPU fallback...")
# safety_model, safety_tokenizer = init_safety_model(
# safety_model_name, force_cpu=True
# )
# except Exception as e:
# logger.error(f"CPU fallback failed: {str(e)}")
# raise
# @lru_cache(maxsize=1000)
# def get_safety_response(prompt: str) -> str:
# """Cached safety check responses"""
# with torch.no_grad():
# inputs = safety_tokenizer(
# prompt,
# return_tensors="pt",
# padding=True,
# truncation=True,
# max_length=MODEL_CONFIG["safety_model"]["max_length"],
# ).to(safety_model.device)
# output = safety_model.generate(
# **inputs,
# max_new_tokens=5,
# temperature=0.1, # Lower temperature for more consistent output
# pad_token_id=safety_tokenizer.pad_token_id,
# eos_token_id=safety_tokenizer.eos_token_id,
# )
# return safety_tokenizer.decode(output[0], skip_special_tokens=True)
# def is_safe(message: str) -> bool:
# """Check if message content is safe"""
# try:
# logger.info("Performing safety check...")
# # Build the prompt with embedded values
# # prompt = f"""[INST] Task: Check if this content is safe according to our safety policy with the below categories.
# # <BEGIN UNSAFE CONTENT CATEGORIES>
# # {everyone_content_policy['policy']}
# # <END UNSAFE CONTENT CATEGORIES>
# # <CONTENT TO CHECK>
# # {message}
# # <END CONTENT TO CHECK>
# # Provide your safety assessment for user in the above CONTENT TO CHECK section:
# # - Reply ONLY with single word 'safe' or 'unsafe' [/INST]
# # """
# prompt = f"""[INST]Check if safe:
# {message}
# Reply 'safe' or 'unsafe'[/INST]
# """
# # Generate safety check on cuda
# # with torch.no_grad():
# # inputs = safety_tokenizer(
# # prompt,
# # return_tensors="pt",
# # padding=True,
# # truncation=True,
# # )
# # # Move inputs to correct device
# # inputs = {k: v.to(device) for k, v in inputs.items()}
# # output = safety_model.generate(
# # **inputs,
# # max_new_tokens=10,
# # temperature=0.1, # Lower temperature for more consistent output
# # pad_token_id=safety_tokenizer.pad_token_id, # Use configured pad token
# # eos_token_id=safety_tokenizer.eos_token_id,
# # do_sample=False,
# # )
# # result = safety_tokenizer.decode(output[0], skip_special_tokens=True)
# result = get_safety_response(prompt)
# print(f"Raw safety check result: {result}")
# # # Extract response after prompt
# # if "[/INST]" in result:
# # result = result.split("[/INST]")[-1]
# # # Clean response
# # result = result.lower().strip()
# # print(f"Cleaned safety check result: {result}")
# # words = [word for word in result.split() if word in ["safe", "unsafe"]]
# # # Take first valid response word
# # is_safe = words[0] == "safe" if words else False
# # print("Final Safety check result:", is_safe)
# is_safe = "safe" in result.lower().split()
# logger.info(
# f"Safety check completed - Result: {'SAFE' if is_safe else 'UNSAFE'}"
# )
# return is_safe
# except Exception as e:
# logger.error(f"Safety check failed: {e}")
# return False
def detect_inventory_changes(game_state, output):
inventory = game_state["inventory"]
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": f"Current Inventory: {str(inventory)}"},
{"role": "user", "content": f"Recent Story: {output}"},
{"role": "user", "content": "Inventory Updates"},
]
input_text = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages])
model_output = generator(input_text, num_return_sequences=1, temperature=0.0)
response = model_output[0]["generated_text"]
result = json.loads(response)
return result["itemUpdates"]
def update_inventory(inventory, item_updates):
update_msg = ""
for update in item_updates:
name = update["name"]
change_amount = update["change_amount"]
if change_amount > 0:
if name not in inventory:
inventory[name] = change_amount
else:
inventory[name] += change_amount
update_msg += f"\nInventory: {name} +{change_amount}"
elif name in inventory and change_amount < 0:
inventory[name] += change_amount
update_msg += f"\nInventory: {name} {change_amount}"
if name in inventory and inventory[name] < 0:
del inventory[name]
return update_msg
logging.info("Finished helper function")