Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,110 @@
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from paddleocr import PaddleOCR
|
6 |
+
from PIL import Image
|
7 |
+
from transformers import AutoTokenizer, LayoutLMForQuestionAnswering
|
8 |
+
from transformers.pipelines.document_question_answering import apply_tesseract
|
9 |
|
10 |
+
model_tag = "impira/layoutlm-document-qa"
|
11 |
+
MODEL = LayoutLMForQuestionAnswering.from_pretrained(model_tag).eval()
|
12 |
+
TOKENIZER = AutoTokenizer.from_pretrained(model_tag)
|
13 |
+
OCR = PaddleOCR(
|
14 |
+
lang="en",
|
15 |
+
det_limit_side_len=10_000,
|
16 |
+
det_db_score_mode="slow",
|
17 |
+
)
|
18 |
+
|
19 |
+
|
20 |
+
PADDLE_OCR_LABEL = "PaddleOCR (en)"
|
21 |
+
TESSERACT_LABEL = "Tesseract (HF default)"
|
22 |
+
|
23 |
+
|
24 |
+
def predict(image: Image.Image, question: str, ocr_engine: str):
|
25 |
+
image_np = np.array(image)
|
26 |
+
|
27 |
+
if ocr_engine == PADDLE_OCR_LABEL:
|
28 |
+
ocr_result = OCR.ocr(image_np, cls=False)[0]
|
29 |
+
words = [x[1][0] for x in ocr_result]
|
30 |
+
boxes = np.asarray([x[0] for x in ocr_result]) # (n_boxes, 4, 2)
|
31 |
+
|
32 |
+
for box in boxes:
|
33 |
+
cv2.polylines(image_np, [box.reshape(-1, 1, 2).astype(int)], True, (0, 255, 255), 3)
|
34 |
+
|
35 |
+
x1 = boxes[:, :, 0].min(1) * 1000 / image.width
|
36 |
+
y1 = boxes[:, :, 1].min(1) * 1000 / image.height
|
37 |
+
x2 = boxes[:, :, 0].max(1) * 1000 / image.width
|
38 |
+
y2 = boxes[:, :, 1].max(1) * 1000 / image.height
|
39 |
+
|
40 |
+
# (n_boxes, 4) in xyxy format
|
41 |
+
boxes = np.stack([x1, y1, x2, y2], axis=1).astype(int)
|
42 |
+
|
43 |
+
elif ocr_engine == TESSERACT_LABEL:
|
44 |
+
words, boxes = apply_tesseract(image, None, "")
|
45 |
+
|
46 |
+
for x1, y1, x2, y2 in boxes:
|
47 |
+
x1 = int(x1 * image.width / 1000)
|
48 |
+
y1 = int(y1 * image.height / 1000)
|
49 |
+
x2 = int(x2 * image.width / 1000)
|
50 |
+
y2 = int(y2 * image.height / 1000)
|
51 |
+
cv2.rectangle(image_np, (x1, y1), (x2, y2), (0, 255, 255), 3)
|
52 |
+
|
53 |
+
else:
|
54 |
+
raise ValueError(f"Unsupported ocr_engine={ocr_engine}")
|
55 |
+
|
56 |
+
token_ids = TOKENIZER(question)["input_ids"]
|
57 |
+
token_boxes = [[0] * 4] * (len(token_ids) - 1) + [[1000] * 4]
|
58 |
+
n_question_tokens = len(token_ids)
|
59 |
+
|
60 |
+
token_ids.append(TOKENIZER.sep_token_id)
|
61 |
+
token_boxes.append([1000] * 4)
|
62 |
+
|
63 |
+
for word, box in zip(words, boxes):
|
64 |
+
new_ids = TOKENIZER(word, add_special_tokens=False)["input_ids"]
|
65 |
+
token_ids.extend(new_ids)
|
66 |
+
token_boxes.extend([box] * len(new_ids))
|
67 |
+
|
68 |
+
token_ids.append(TOKENIZER.sep_token_id)
|
69 |
+
token_boxes.append([1000] * 4)
|
70 |
+
|
71 |
+
with torch.inference_mode():
|
72 |
+
outputs = MODEL(
|
73 |
+
input_ids=torch.tensor(token_ids).unsqueeze(0),
|
74 |
+
bbox=torch.tensor(token_boxes).unsqueeze(0),
|
75 |
+
)
|
76 |
+
|
77 |
+
start_scores = outputs.start_logits.squeeze(0).softmax(-1)[n_question_tokens:]
|
78 |
+
end_scores = outputs.end_logits.squeeze(0).softmax(-1)[n_question_tokens:]
|
79 |
+
|
80 |
+
span_scores = start_scores.view(-1, 1) * end_scores.view(1, -1)
|
81 |
+
span_scores = torch.triu(span_scores) # don't allow start < end
|
82 |
+
|
83 |
+
score, indices = span_scores.flatten().max(-1)
|
84 |
+
start_idx = n_question_tokens + indices // span_scores.shape[1]
|
85 |
+
end_idx = n_question_tokens + indices % span_scores.shape[1]
|
86 |
+
|
87 |
+
answer = TOKENIZER.decode(token_ids[start_idx : end_idx + 1])
|
88 |
+
|
89 |
+
return answer, score, image_np
|
90 |
+
|
91 |
+
|
92 |
+
gr.Interface(
|
93 |
+
fn=predict,
|
94 |
+
inputs=[
|
95 |
+
gr.Image(type="pil"),
|
96 |
+
"text",
|
97 |
+
gr.Radio([PADDLE_OCR_LABEL, TESSERACT_LABEL]),
|
98 |
+
],
|
99 |
+
outputs=[
|
100 |
+
gr.Textbox(label="Answer"),
|
101 |
+
gr.Number(label="Score"),
|
102 |
+
gr.Image(label="OCR results"),
|
103 |
+
],
|
104 |
+
examples=[
|
105 |
+
["example_01.jpg", "When did the sample take place?", PADDLE_OCR_LABEL],
|
106 |
+
["example_02.jpg", "What is the ID number?", PADDLE_OCR_LABEL],
|
107 |
+
],
|
108 |
+
).launch(server_name="0.0.0.0", server_port=7860)
|
109 |
+
|
110 |
+
// gr.load("models/PrimWong/layout_qa_hparam_tuning").launch()
|