PrimWong commited on
Commit
f68c0f6
·
verified ·
1 Parent(s): e16dcf0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +108 -1
app.py CHANGED
@@ -1,3 +1,110 @@
 
1
  import gradio as gr
 
 
 
 
 
 
2
 
3
- gr.load("models/PrimWong/layout_qa_hparam_tuning").launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
  import gradio as gr
3
+ import numpy as np
4
+ import torch
5
+ from paddleocr import PaddleOCR
6
+ from PIL import Image
7
+ from transformers import AutoTokenizer, LayoutLMForQuestionAnswering
8
+ from transformers.pipelines.document_question_answering import apply_tesseract
9
 
10
+ model_tag = "impira/layoutlm-document-qa"
11
+ MODEL = LayoutLMForQuestionAnswering.from_pretrained(model_tag).eval()
12
+ TOKENIZER = AutoTokenizer.from_pretrained(model_tag)
13
+ OCR = PaddleOCR(
14
+ lang="en",
15
+ det_limit_side_len=10_000,
16
+ det_db_score_mode="slow",
17
+ )
18
+
19
+
20
+ PADDLE_OCR_LABEL = "PaddleOCR (en)"
21
+ TESSERACT_LABEL = "Tesseract (HF default)"
22
+
23
+
24
+ def predict(image: Image.Image, question: str, ocr_engine: str):
25
+ image_np = np.array(image)
26
+
27
+ if ocr_engine == PADDLE_OCR_LABEL:
28
+ ocr_result = OCR.ocr(image_np, cls=False)[0]
29
+ words = [x[1][0] for x in ocr_result]
30
+ boxes = np.asarray([x[0] for x in ocr_result]) # (n_boxes, 4, 2)
31
+
32
+ for box in boxes:
33
+ cv2.polylines(image_np, [box.reshape(-1, 1, 2).astype(int)], True, (0, 255, 255), 3)
34
+
35
+ x1 = boxes[:, :, 0].min(1) * 1000 / image.width
36
+ y1 = boxes[:, :, 1].min(1) * 1000 / image.height
37
+ x2 = boxes[:, :, 0].max(1) * 1000 / image.width
38
+ y2 = boxes[:, :, 1].max(1) * 1000 / image.height
39
+
40
+ # (n_boxes, 4) in xyxy format
41
+ boxes = np.stack([x1, y1, x2, y2], axis=1).astype(int)
42
+
43
+ elif ocr_engine == TESSERACT_LABEL:
44
+ words, boxes = apply_tesseract(image, None, "")
45
+
46
+ for x1, y1, x2, y2 in boxes:
47
+ x1 = int(x1 * image.width / 1000)
48
+ y1 = int(y1 * image.height / 1000)
49
+ x2 = int(x2 * image.width / 1000)
50
+ y2 = int(y2 * image.height / 1000)
51
+ cv2.rectangle(image_np, (x1, y1), (x2, y2), (0, 255, 255), 3)
52
+
53
+ else:
54
+ raise ValueError(f"Unsupported ocr_engine={ocr_engine}")
55
+
56
+ token_ids = TOKENIZER(question)["input_ids"]
57
+ token_boxes = [[0] * 4] * (len(token_ids) - 1) + [[1000] * 4]
58
+ n_question_tokens = len(token_ids)
59
+
60
+ token_ids.append(TOKENIZER.sep_token_id)
61
+ token_boxes.append([1000] * 4)
62
+
63
+ for word, box in zip(words, boxes):
64
+ new_ids = TOKENIZER(word, add_special_tokens=False)["input_ids"]
65
+ token_ids.extend(new_ids)
66
+ token_boxes.extend([box] * len(new_ids))
67
+
68
+ token_ids.append(TOKENIZER.sep_token_id)
69
+ token_boxes.append([1000] * 4)
70
+
71
+ with torch.inference_mode():
72
+ outputs = MODEL(
73
+ input_ids=torch.tensor(token_ids).unsqueeze(0),
74
+ bbox=torch.tensor(token_boxes).unsqueeze(0),
75
+ )
76
+
77
+ start_scores = outputs.start_logits.squeeze(0).softmax(-1)[n_question_tokens:]
78
+ end_scores = outputs.end_logits.squeeze(0).softmax(-1)[n_question_tokens:]
79
+
80
+ span_scores = start_scores.view(-1, 1) * end_scores.view(1, -1)
81
+ span_scores = torch.triu(span_scores) # don't allow start < end
82
+
83
+ score, indices = span_scores.flatten().max(-1)
84
+ start_idx = n_question_tokens + indices // span_scores.shape[1]
85
+ end_idx = n_question_tokens + indices % span_scores.shape[1]
86
+
87
+ answer = TOKENIZER.decode(token_ids[start_idx : end_idx + 1])
88
+
89
+ return answer, score, image_np
90
+
91
+
92
+ gr.Interface(
93
+ fn=predict,
94
+ inputs=[
95
+ gr.Image(type="pil"),
96
+ "text",
97
+ gr.Radio([PADDLE_OCR_LABEL, TESSERACT_LABEL]),
98
+ ],
99
+ outputs=[
100
+ gr.Textbox(label="Answer"),
101
+ gr.Number(label="Score"),
102
+ gr.Image(label="OCR results"),
103
+ ],
104
+ examples=[
105
+ ["example_01.jpg", "When did the sample take place?", PADDLE_OCR_LABEL],
106
+ ["example_02.jpg", "What is the ID number?", PADDLE_OCR_LABEL],
107
+ ],
108
+ ).launch(server_name="0.0.0.0", server_port=7860)
109
+
110
+ // gr.load("models/PrimWong/layout_qa_hparam_tuning").launch()