Priyanka-Balivada's picture
Update app.py
d82c9b1 verified
raw
history blame
10.1 kB
# Import necessary libraries
import streamlit as st
import nltk
from gensim.models.doc2vec import Doc2Vec, TaggedDocument
from nltk.tokenize import word_tokenize
import PyPDF2
import pandas as pd
import re
import matplotlib.pyplot as plt
import seaborn as sns
import spacy
from numpy import triu
# Download necessary NLTK data
nltk.download('punkt')
# Define regular expressions for pattern matching
float_regex = re.compile(r'^\d{1,2}(\.\d{1,2})?$')
email_pattern = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b'
float_digit_regex = re.compile(r'^\d{10}$')
email_with_phone_regex = re.compile(r'(\d{10}).|.(\d{10})')
# Function to extract text from a PDF file
def extract_text_from_pdf(pdf_file):
pdf_reader = PyPDF2.PdfReader(pdf_file)
text = ""
for page_num in range(len(pdf_reader.pages)):
text += pdf_reader.pages[page_num].extract_text()
return text
# Function to tokenize text using the NLP model
def tokenize_text(text, nlp_model):
doc = nlp_model(text, disable=["tagger", "parser"])
tokens = [(token.text.lower(), token.label_) for token in doc.ents]
return tokens
# Function to extract CGPA from a resume
def extract_cgpa(resume_text):
cgpa_pattern = r'\b(?:CGPA|GPA|C\.G\.PA|Cumulative GPA)\s*:?[\s-]([0-9]+(?:\.[0-9]+)?)\b|\b([0-9]+(?:\.[0-9]+)?)\s(?:CGPA|GPA)\b'
match = re.search(cgpa_pattern, resume_text, re.IGNORECASE)
if match:
cgpa = match.group(1) if match.group(1) else match.group(2)
return float(cgpa)
else:
return None
# Function to extract skills from a resume
def extract_skills(text, skills_keywords):
skills = [skill.lower() for skill in skills_keywords if re.search(r'\b' + re.escape(skill.lower()) + r'\b', text.lower())]
return skills
# Function to preprocess text
def preprocess_text(text):
return word_tokenize(text.lower())
# Function to train a Doc2Vec model
def train_doc2vec_model(documents):
model = Doc2Vec(vector_size=20, min_count=2, epochs=50)
model.build_vocab(documents)
model.train(documents, total_examples=model.corpus_count, epochs=model.epochs)
return model
# Function to calculate similarity between two texts
def calculate_similarity(model, text1, text2):
vector1 = model.infer_vector(preprocess_text(text1))
vector2 = model.infer_vector(preprocess_text(text2))
return model.dv.cosine_similarities(vector1, [vector2])[0]
# Function to calculate accuracy
def accuracy_calculation(true_positives, false_positives, false_negatives):
total = true_positives + false_positives + false_negatives
accuracy = true_positives / total if total != 0 else 0
return accuracy
# Streamlit Frontend
st.markdown("# Resume Matching Tool πŸ“ƒπŸ“ƒ")
st.markdown("An application to match resumes with a job description.")
# Sidebar - File Upload for Resumes
st.sidebar.markdown("## Upload Resumes PDF")
resumes_files = st.sidebar.file_uploader("Upload Resumes PDF", type=["pdf"], accept_multiple_files=True)
if resumes_files:
# Sidebar - File Upload for Job Descriptions
st.sidebar.markdown("## Upload Job Description PDF")
job_descriptions_file = st.sidebar.file_uploader("Upload Job Description PDF", type=["pdf"])
if job_descriptions_file:
# Load the pre-trained NLP model
nlp_model_path = "en_Resume_Matching_Keywords"
nlp = spacy.load(nlp_model_path)
# Backend Processing
job_description_text = extract_text_from_pdf(job_descriptions_file)
resumes_texts = [extract_text_from_pdf(resume_file) for resume_file in resumes_files]
job_description_text = extract_text_from_pdf(job_descriptions_file)
job_description_tokens = tokenize_text(job_description_text, nlp)
# Initialize counters
overall_skill_matches = 0
overall_qualification_matches = 0
# Create a list to store individual results
results_list = []
job_skills = set()
job_qualifications = set()
for job_token, job_label in job_description_tokens:
if job_label == 'QUALIFICATION':
job_qualifications.add(job_token.replace('\n', ' '))
elif job_label == 'SKILLS':
job_skills.add(job_token.replace('\n', ' '))
job_skills_number = len(job_skills)
job_qualifications_number = len(job_qualifications)
# Lists to store counts of matched skills for all resumes
skills_counts_all_resumes = []
# Iterate over all uploaded resumes
for uploaded_resume in resumes_files:
resume_text = extract_text_from_pdf(uploaded_resume)
resume_tokens = tokenize_text(resume_text, nlp)
# Initialize counters for individual resume
skillMatch = 0
qualificationMatch = 0
cgpa = ""
# Lists to store matched skills and qualifications for each resume
matched_skills = set()
matched_qualifications = set()
email = set()
phone = set()
name = set()
# Compare the tokens in the resume with the job description
for resume_token, resume_label in resume_tokens:
for job_token, job_label in job_description_tokens:
if resume_token.lower().replace('\n', ' ') == job_token.lower().replace('\n', ' '):
if resume_label == 'SKILLS':
matched_skills.add(resume_token.replace('\n', ' '))
elif resume_label == 'QUALIFICATION':
matched_qualifications.add(resume_token.replace('\n', ' '))
elif resume_label == 'PHONE' and bool(float_digit_regex.match(resume_token)):
phone.add(resume_token)
elif resume_label == 'QUALIFICATION':
matched_qualifications.add(resume_token.replace('\n', ' '))
skillMatch = len(matched_skills)
qualificationMatch = len(matched_qualifications)
# Convert the list of emails to a set
email_set = set(re.findall(email_pattern, resume_text.replace('\n', ' ')))
email.update(email_set)
numberphone=""
for email_str in email:
numberphone = email_with_phone_regex.search(email_str)
if numberphone:
email.remove(email_str)
val=numberphone.group(1) or numberphone.group(2)
phone.add(val)
email.add(email_str.strip(val))
# Increment overall counters based on matches
overall_skill_matches += skillMatch
overall_qualification_matches += qualificationMatch
# Add count of matched skills for this resume to the list
skills_counts_all_resumes.append([resume_text.count(skill.lower()) for skill in job_skills])
# Create a dictionary for the current resume and append to the results list
result_dict = {
"Resume": uploaded_resume.name,
"Similarity Score": (skillMatch/job_skills_number)*100,
"Skill Matches": skillMatch,
"Matched Skills": matched_skills,
"CGPA": extract_cgpa(resume_text),
"Email": email,
"Phone": phone,
"Qualification Matches": qualificationMatch,
"Matched Qualifications": matched_qualifications
}
results_list.append(result_dict)
# Display overall matches
st.subheader("Overall Matches")
st.write(f"Total Skill Matches: {overall_skill_matches}")
st.write(f"Total Qualification Matches: {overall_qualification_matches}")
st.write(f"Job Qualifications: {job_qualifications}")
st.write(f"Job Skills: {job_skills}")
# Display individual results in a table
results_df = pd.DataFrame(results_list)
st.subheader("Individual Results")
st.dataframe(results_df)
tagged_resumes = [TaggedDocument(words=preprocess_text(text), tags=[str(i)]) for i, text in enumerate(resumes_texts)]
model_resumes = train_doc2vec_model(tagged_resumes)
st.subheader("\nHeatmap:")
# Get skills keywords from user input
skills_keywords_input = st.text_input("Enter skills keywords separated by commas (e.g., python, java, machine learning):")
skills_keywords = [skill.strip() for skill in skills_keywords_input.split(',') if skill.strip()]
if skills_keywords:
# Calculate the similarity score between each skill keyword and the resume text
skills_similarity_scores = []
for resume_text in resumes_texts:
resume_text_similarity_scores = []
for skill in skills_keywords:
similarity_score = calculate_similarity(model_resumes, resume_text, skill)
resume_text_similarity_scores.append(similarity_score)
skills_similarity_scores.append(resume_text_similarity_scores)
# Create a DataFrame with the similarity scores and set the index to the names of the PDFs
skills_similarity_df = pd.DataFrame(skills_similarity_scores, columns=skills_keywords, index=[resume_file.name for resume_file in resumes_files])
# Plot the heatmap
fig, ax = plt.subplots(figsize=(12, 8))
sns.heatmap(skills_similarity_df, cmap='YlGnBu', annot=True, fmt=".2f", ax=ax)
ax.set_title('Heatmap for Skills Similarity')
ax.set_xlabel('Skills')
ax.set_ylabel('Resumes')
# Rotate the y-axis labels for better readability
plt.yticks(rotation=0)
# Display the Matplotlib figure using st.pyplot()
st.pyplot(fig)
else:
st.write("Please enter at least one skill keyword.")
else:
st.warning("Please upload the Job Description PDF to proceed.")
else:
st.warning("Please upload Resumes PDF to proceed.")