Priyanka-Balivada commited on
Commit
0613bb7
β€’
1 Parent(s): bc97cc9

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +238 -0
app.py ADDED
@@ -0,0 +1,238 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Import necessary libraries
2
+ import streamlit as st
3
+ import nltk
4
+ from gensim.models.doc2vec import Doc2Vec, TaggedDocument
5
+ from nltk.tokenize import word_tokenize
6
+ import PyPDF2
7
+ import pandas as pd
8
+ import re
9
+ import matplotlib.pyplot as plt
10
+ import seaborn as sns
11
+ import spacy
12
+
13
+ # Download necessary NLTK data
14
+ nltk.download('punkt')
15
+
16
+ # Define regular expressions for pattern matching
17
+ float_regex = re.compile(r'^\d{1,2}(\.\d{1,2})?$')
18
+ email_pattern = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b'
19
+ float_digit_regex = re.compile(r'^\d{10}$')
20
+ email_with_phone_regex = re.compile(r'(\d{10}).|.(\d{10})')
21
+
22
+ # Function to extract text from a PDF file
23
+ def extract_text_from_pdf(pdf_file):
24
+ pdf_reader = PyPDF2.PdfReader(pdf_file)
25
+ text = ""
26
+ for page_num in range(len(pdf_reader.pages)):
27
+ text += pdf_reader.pages[page_num].extract_text()
28
+ return text
29
+
30
+ # Function to tokenize text using the NLP model
31
+ def tokenize_text(text, nlp_model):
32
+ doc = nlp_model(text, disable=["tagger", "parser"])
33
+ tokens = [(token.text.lower(), token.label_) for token in doc.ents]
34
+ return tokens
35
+
36
+ # Function to extract CGPA from a resume
37
+ def extract_cgpa(resume_text):
38
+ cgpa_pattern = r'\b(?:CGPA|GPA|C\.G\.PA|Cumulative GPA)\s*:?[\s-]([0-9]+(?:\.[0-9]+)?)\b|\b([0-9]+(?:\.[0-9]+)?)\s(?:CGPA|GPA)\b'
39
+ match = re.search(cgpa_pattern, resume_text, re.IGNORECASE)
40
+ if match:
41
+ cgpa = match.group(1) if match.group(1) else match.group(2)
42
+ return float(cgpa)
43
+ else:
44
+ return None
45
+
46
+ # Function to extract skills from a resume
47
+ def extract_skills(text, skills_keywords):
48
+ skills = [skill.lower() for skill in skills_keywords if re.search(r'\b' + re.escape(skill.lower()) + r'\b', text.lower())]
49
+ return skills
50
+
51
+ # Function to preprocess text
52
+ def preprocess_text(text):
53
+ return word_tokenize(text.lower())
54
+
55
+ # Function to train a Doc2Vec model
56
+ def train_doc2vec_model(documents):
57
+ model = Doc2Vec(vector_size=20, min_count=2, epochs=50)
58
+ model.build_vocab(documents)
59
+ model.train(documents, total_examples=model.corpus_count, epochs=model.epochs)
60
+ return model
61
+
62
+ # Function to calculate similarity between two texts
63
+ def calculate_similarity(model, text1, text2):
64
+ vector1 = model.infer_vector(preprocess_text(text1))
65
+ vector2 = model.infer_vector(preprocess_text(text2))
66
+ return model.dv.cosine_similarities(vector1, [vector2])[0]
67
+
68
+ # Function to calculate accuracy
69
+ def accuracy_calculation(true_positives, false_positives, false_negatives):
70
+ total = true_positives + false_positives + false_negatives
71
+ accuracy = true_positives / total if total != 0 else 0
72
+ return accuracy
73
+
74
+ # Streamlit Frontend
75
+ st.markdown("# Resume Matching Tool πŸ“ƒπŸ“ƒ")
76
+ st.markdown("An application to match resumes with a job description.")
77
+
78
+ # Sidebar - File Upload for Resumes
79
+ st.sidebar.markdown("## Upload Resumes PDF")
80
+ resumes_files = st.sidebar.file_uploader("Upload Resumes PDF", type=["pdf"], accept_multiple_files=True)
81
+
82
+ if resumes_files:
83
+ # Sidebar - File Upload for Job Descriptions
84
+ st.sidebar.markdown("## Upload Job Description PDF")
85
+ job_descriptions_file = st.sidebar.file_uploader("Upload Job Description PDF", type=["pdf"])
86
+
87
+ if job_descriptions_file:
88
+ # Load the pre-trained NLP model
89
+ nlp_model_path = "en_Resume_Matching_Keywords"
90
+ nlp = spacy.load(nlp_model_path)
91
+
92
+ # Backend Processing
93
+ job_description_text = extract_text_from_pdf(job_descriptions_file)
94
+ resumes_texts = [extract_text_from_pdf(resume_file) for resume_file in resumes_files]
95
+ job_description_text = extract_text_from_pdf(job_descriptions_file)
96
+ job_description_tokens = tokenize_text(job_description_text, nlp)
97
+
98
+ # Initialize counters
99
+ overall_skill_matches = 0
100
+ overall_qualification_matches = 0
101
+
102
+ # Create a list to store individual results
103
+ results_list = []
104
+ job_skills = set()
105
+ job_qualifications = set()
106
+
107
+ for job_token, job_label in job_description_tokens:
108
+ if job_label == 'QUALIFICATION':
109
+ job_qualifications.add(job_token.replace('\n', ' '))
110
+ elif job_label == 'SKILLS':
111
+ job_skills.add(job_token.replace('\n', ' '))
112
+
113
+ job_skills_number = len(job_skills)
114
+ job_qualifications_number = len(job_qualifications)
115
+
116
+ # Lists to store counts of matched skills for all resumes
117
+ skills_counts_all_resumes = []
118
+
119
+ # Iterate over all uploaded resumes
120
+ for uploaded_resume in resumes_files:
121
+ resume_text = extract_text_from_pdf(uploaded_resume)
122
+ resume_tokens = tokenize_text(resume_text, nlp)
123
+
124
+ # Initialize counters for individual resume
125
+ skillMatch = 0
126
+ qualificationMatch = 0
127
+ cgpa = ""
128
+
129
+ # Lists to store matched skills and qualifications for each resume
130
+ matched_skills = set()
131
+ matched_qualifications = set()
132
+ email = set()
133
+ phone = set()
134
+ name = set()
135
+
136
+ # Compare the tokens in the resume with the job description
137
+ for resume_token, resume_label in resume_tokens:
138
+ for job_token, job_label in job_description_tokens:
139
+ if resume_token.lower().replace('\n', ' ') == job_token.lower().replace('\n', ' '):
140
+ if resume_label == 'SKILLS':
141
+ matched_skills.add(resume_token.replace('\n', ' '))
142
+ elif resume_label == 'QUALIFICATION':
143
+ matched_qualifications.add(resume_token.replace('\n', ' '))
144
+ elif resume_label == 'PHONE' and bool(float_digit_regex.match(resume_token)):
145
+ phone.add(resume_token)
146
+ elif resume_label == 'QUALIFICATION':
147
+ matched_qualifications.add(resume_token.replace('\n', ' '))
148
+
149
+ skillMatch = len(matched_skills)
150
+ qualificationMatch = len(matched_qualifications)
151
+
152
+ # Convert the list of emails to a set
153
+ email_set = set(re.findall(email_pattern, resume_text.replace('\n', ' ')))
154
+ email.update(email_set)
155
+
156
+ numberphone=""
157
+ for email_str in email:
158
+ numberphone = email_with_phone_regex.search(email_str)
159
+ if numberphone:
160
+ email.remove(email_str)
161
+ val=numberphone.group(1) or numberphone.group(2)
162
+ phone.add(val)
163
+ email.add(email_str.strip(val))
164
+
165
+ # Increment overall counters based on matches
166
+ overall_skill_matches += skillMatch
167
+ overall_qualification_matches += qualificationMatch
168
+
169
+ # Add count of matched skills for this resume to the list
170
+ skills_counts_all_resumes.append([resume_text.count(skill.lower()) for skill in job_skills])
171
+
172
+ # Create a dictionary for the current resume and append to the results list
173
+ result_dict = {
174
+ "Resume": uploaded_resume.name,
175
+ "Similarity Score": (skillMatch/job_skills_number)*100,
176
+ "Skill Matches": skillMatch,
177
+ "Matched Skills": matched_skills,
178
+ "CGPA": extract_cgpa(resume_text),
179
+ "Email": email,
180
+ "Phone": phone,
181
+ "Qualification Matches": qualificationMatch,
182
+ "Matched Qualifications": matched_qualifications
183
+ }
184
+
185
+ results_list.append(result_dict)
186
+
187
+ # Display overall matches
188
+ st.subheader("Overall Matches")
189
+ st.write(f"Total Skill Matches: {overall_skill_matches}")
190
+ st.write(f"Total Qualification Matches: {overall_qualification_matches}")
191
+ st.write(f"Job Qualifications: {job_qualifications}")
192
+ st.write(f"Job Skills: {job_skills}")
193
+
194
+ # Display individual results in a table
195
+ results_df = pd.DataFrame(results_list)
196
+ st.subheader("Individual Results")
197
+ st.dataframe(results_df)
198
+ tagged_resumes = [TaggedDocument(words=preprocess_text(text), tags=[str(i)]) for i, text in enumerate(resumes_texts)]
199
+ model_resumes = train_doc2vec_model(tagged_resumes)
200
+
201
+ st.subheader("\nHeatmap:")
202
+
203
+ # Get skills keywords from user input
204
+ skills_keywords_input = st.text_input("Enter skills keywords separated by commas (e.g., python, java, machine learning):")
205
+ skills_keywords = [skill.strip() for skill in skills_keywords_input.split(',') if skill.strip()]
206
+
207
+ if skills_keywords:
208
+ # Calculate the similarity score between each skill keyword and the resume text
209
+ skills_similarity_scores = []
210
+ for resume_text in resumes_texts:
211
+ resume_text_similarity_scores = []
212
+ for skill in skills_keywords:
213
+ similarity_score = calculate_similarity(model_resumes, resume_text, skill)
214
+ resume_text_similarity_scores.append(similarity_score)
215
+ skills_similarity_scores.append(resume_text_similarity_scores)
216
+
217
+ # Create a DataFrame with the similarity scores and set the index to the names of the PDFs
218
+ skills_similarity_df = pd.DataFrame(skills_similarity_scores, columns=skills_keywords, index=[resume_file.name for resume_file in resumes_files])
219
+
220
+ # Plot the heatmap
221
+ fig, ax = plt.subplots(figsize=(12, 8))
222
+ sns.heatmap(skills_similarity_df, cmap='YlGnBu', annot=True, fmt=".2f", ax=ax)
223
+ ax.set_title('Heatmap for Skills Similarity')
224
+ ax.set_xlabel('Skills')
225
+ ax.set_ylabel('Resumes')
226
+
227
+ # Rotate the y-axis labels for better readability
228
+ plt.yticks(rotation=0)
229
+
230
+ # Display the Matplotlib figure using st.pyplot()
231
+ st.pyplot(fig)
232
+ else:
233
+ st.write("Please enter at least one skill keyword.")
234
+
235
+ else:
236
+ st.warning("Please upload the Job Description PDF to proceed.")
237
+ else:
238
+ st.warning("Please upload Resumes PDF to proceed.")