|
import streamlit as st |
|
import nltk |
|
from gensim.models.doc2vec import Doc2Vec, TaggedDocument |
|
from nltk.tokenize import word_tokenize |
|
import PyPDF2 |
|
import pandas as pd |
|
import re |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
import spacy |
|
import re |
|
import pandas as pd |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
|
|
nltk.download('punkt') |
|
|
|
|
|
nlp_model_path = "Priyanka-Balivada/en_Resume_Matching_Keywords" |
|
nlp = spacy.load(nlp_model_path) |
|
|
|
float_regex = re.compile(r'^\d{1,2}(\.\d{1,2})?$') |
|
email_pattern = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b' |
|
float_digit_regex = re.compile(r'^\d{10}$') |
|
email_with_phone_regex = email_with_phone_regex = re.compile( |
|
r'(\d{10}).|.(\d{10})') |
|
|
|
|
|
def extract_text_from_pdf(pdf_file): |
|
pdf_reader = PyPDF2.PdfReader(pdf_file) |
|
text = "" |
|
for page_num in range(len(pdf_reader.pages)): |
|
text += pdf_reader.pages[page_num].extract_text() |
|
return text |
|
|
|
|
|
def tokenize_text(text, nlp_model): |
|
doc = nlp_model(text, disable=["tagger", "parser"]) |
|
tokens = [(token.text.lower(), token.label_) for token in doc.ents] |
|
return tokens |
|
|
|
|
|
def extract_cgpa(resume_text): |
|
|
|
cgpa_pattern = r'\b(?:CGPA|GPA|C\.G\.PA|Cumulative GPA)\s*:?[\s-]([0-9]+(?:\.[0-9]+)?)\b|\b([0-9]+(?:\.[0-9]+)?)\s(?:CGPA|GPA)\b' |
|
|
|
|
|
match = re.search(cgpa_pattern, resume_text, re.IGNORECASE) |
|
|
|
|
|
if match: |
|
|
|
cgpa = match.group(1) if match.group(1) else match.group(2) |
|
return float(cgpa) |
|
else: |
|
return None |
|
|
|
|
|
def extract_skills(text, skills_keywords): |
|
skills = [skill.lower() |
|
for skill in skills_keywords if re.search(r'\b' + re.escape(skill.lower()) + r'\b', text.lower())] |
|
return skills |
|
|
|
|
|
def preprocess_text(text): |
|
return word_tokenize(text.lower()) |
|
|
|
|
|
|
|
|
|
|
|
def train_doc2vec_model(documents): |
|
model = Doc2Vec(vector_size=20, min_count=2, epochs=50) |
|
model.build_vocab(documents) |
|
model.train(documents, total_examples=model.corpus_count, |
|
epochs=model.epochs) |
|
return model |
|
|
|
|
|
def calculate_similarity(model, text1, text2): |
|
vector1 = model.infer_vector(preprocess_text(text1)) |
|
vector2 = model.infer_vector(preprocess_text(text2)) |
|
return model.dv.cosine_similarities(vector1, [vector2])[0] |
|
|
|
|
|
def accuracy_calculation(true_positives, false_positives, false_negatives): |
|
total = true_positives + false_positives + false_negatives |
|
accuracy = true_positives / total if total != 0 else 0 |
|
return accuracy |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
st.markdown("# Resume Matching Tool ππ") |
|
st.markdown("An application to match resumes with a job description.") |
|
|
|
|
|
st.sidebar.markdown("## Upload Resumes PDF") |
|
resumes_files = st.sidebar.file_uploader( |
|
"Upload Resumes PDF", type=["pdf"], accept_multiple_files=True) |
|
|
|
if resumes_files: |
|
|
|
st.sidebar.markdown("## Upload Job Description PDF") |
|
job_descriptions_file = st.sidebar.file_uploader( |
|
"Upload Job Description PDF", type=["pdf"]) |
|
|
|
if job_descriptions_file: |
|
|
|
|
|
job_description_text = extract_text_from_pdf(job_descriptions_file) |
|
resumes_texts = [extract_text_from_pdf( |
|
resume_file) for resume_file in resumes_files] |
|
job_description_text = extract_text_from_pdf(job_descriptions_file) |
|
job_description_tokens = tokenize_text(job_description_text, nlp) |
|
|
|
|
|
|
|
|
|
overall_skill_matches = 0 |
|
overall_qualification_matches = 0 |
|
|
|
|
|
results_list = [] |
|
job_skills = set() |
|
job_qualifications = set() |
|
|
|
for job_token, job_label in job_description_tokens: |
|
if job_label == 'QUALIFICATION': |
|
job_qualifications.add(job_token.replace('\n', ' ')) |
|
elif job_label == 'SKILLS': |
|
job_skills.add(job_token.replace('\n', ' ')) |
|
|
|
job_skills_number = len(job_skills) |
|
job_qualifications_number = len(job_qualifications) |
|
|
|
|
|
skills_counts_all_resumes = [] |
|
|
|
|
|
for uploaded_resume in resumes_files: |
|
resume_text = extract_text_from_pdf(uploaded_resume) |
|
resume_tokens = tokenize_text(resume_text, nlp) |
|
|
|
|
|
skillMatch = 0 |
|
qualificationMatch = 0 |
|
cgpa = "" |
|
|
|
|
|
matched_skills = set() |
|
matched_qualifications = set() |
|
email = set() |
|
phone = set() |
|
name = set() |
|
|
|
|
|
for resume_token, resume_label in resume_tokens: |
|
for job_token, job_label in job_description_tokens: |
|
if resume_token.lower().replace('\n', ' ') == job_token.lower().replace('\n', ' '): |
|
if resume_label == 'SKILLS': |
|
matched_skills.add(resume_token.replace('\n', ' ')) |
|
elif resume_label == 'QUALIFICATION': |
|
matched_qualifications.add(resume_token.replace('\n', ' ')) |
|
elif resume_label == 'PHONE' and bool(float_digit_regex.match(resume_token)): |
|
phone.add(resume_token) |
|
elif resume_label == 'QUALIFICATION': |
|
matched_qualifications.add(resume_token.replace('\n', ' ')) |
|
|
|
skillMatch = len(matched_skills) |
|
qualificationMatch = len(matched_qualifications) |
|
|
|
|
|
email_set = set(re.findall(email_pattern, resume_text.replace('\n', ' '))) |
|
email.update(email_set) |
|
|
|
numberphone="" |
|
for email_str in email: |
|
numberphone = email_with_phone_regex.search(email_str) |
|
if numberphone: |
|
email.remove(email_str) |
|
val=numberphone.group(1) or numberphone.group(2) |
|
phone.add(val) |
|
email.add(email_str.strip(val)) |
|
|
|
|
|
overall_skill_matches += skillMatch |
|
overall_qualification_matches += qualificationMatch |
|
|
|
|
|
skills_counts_all_resumes.append( |
|
[resume_text.count(skill.lower()) for skill in job_skills]) |
|
|
|
|
|
result_dict = { |
|
"Resume": uploaded_resume.name, |
|
"Similarity Score": (skillMatch/job_skills_number)*100, |
|
"Skill Matches": skillMatch, |
|
"Matched Skills": matched_skills, |
|
"CGPA": extract_cgpa(resume_text), |
|
"Email": email, |
|
"Phone": phone, |
|
"Qualification Matches": qualificationMatch, |
|
"Matched Qualifications": matched_qualifications |
|
} |
|
|
|
results_list.append(result_dict) |
|
|
|
|
|
st.subheader("Overall Matches") |
|
st.write(f"Total Skill Matches: {overall_skill_matches}") |
|
st.write( |
|
f"Total Qualification Matches: {overall_qualification_matches}") |
|
st.write(f"Job Qualifications: {job_qualifications}") |
|
st.write(f"Job Skills: {job_skills}") |
|
|
|
|
|
results_df = pd.DataFrame(results_list) |
|
st.subheader("Individual Results") |
|
st.dataframe(results_df) |
|
tagged_resumes = [TaggedDocument(words=preprocess_text( |
|
text), tags=[str(i)]) for i, text in enumerate(resumes_texts)] |
|
model_resumes = train_doc2vec_model(tagged_resumes) |
|
|
|
|
|
|
|
st.subheader("\nHeatmap:") |
|
|
|
|
|
skills_keywords_input = st.text_input( |
|
"Enter skills keywords separated by commas (e.g., python, java, machine learning):") |
|
skills_keywords = [skill.strip() |
|
for skill in skills_keywords_input.split(',') if skill.strip()] |
|
|
|
if skills_keywords: |
|
|
|
skills_similarity_scores = [] |
|
for resume_text in resumes_texts: |
|
resume_text_similarity_scores = [] |
|
for skill in skills_keywords: |
|
similarity_score = calculate_similarity( |
|
model_resumes, resume_text, skill) |
|
resume_text_similarity_scores.append(similarity_score) |
|
skills_similarity_scores.append(resume_text_similarity_scores) |
|
|
|
|
|
skills_similarity_df = pd.DataFrame( |
|
skills_similarity_scores, columns=skills_keywords, index=[resume_file.name for resume_file in resumes_files]) |
|
|
|
|
|
fig, ax = plt.subplots(figsize=(12, 8)) |
|
|
|
sns.heatmap(skills_similarity_df, |
|
cmap='YlGnBu', annot=True, fmt=".2f", ax=ax) |
|
ax.set_title('Heatmap for Skills Similarity') |
|
ax.set_xlabel('Skills') |
|
ax.set_ylabel('Resumes') |
|
|
|
|
|
plt.yticks(rotation=0) |
|
|
|
|
|
st.pyplot(fig) |
|
else: |
|
st.write("Please enter at least one skill keyword.") |
|
|
|
else: |
|
st.warning("Please upload the Job Description PDF to proceed.") |
|
else: |
|
st.warning("Please upload Resumes PDF to proceed.") |
|
|