Priyanka-Balivada's picture
update app.py
f09c147 verified
raw
history blame
10.2 kB
import streamlit as st
import nltk
from gensim.models.doc2vec import Doc2Vec, TaggedDocument
from nltk.tokenize import word_tokenize
import PyPDF2
import pandas as pd
import re
import matplotlib.pyplot as plt
import seaborn as sns
import spacy
import re
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
nltk.download('punkt')
nlp_model_path = "Priyanka-Balivada/en_Resume_Matching_Keywords"
nlp = spacy.load(nlp_model_path)
float_regex = re.compile(r'^\d{1,2}(\.\d{1,2})?$')
email_pattern = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b'
float_digit_regex = re.compile(r'^\d{10}$')
email_with_phone_regex = email_with_phone_regex = re.compile(
r'(\d{10}).|.(\d{10})')
def extract_text_from_pdf(pdf_file):
pdf_reader = PyPDF2.PdfReader(pdf_file)
text = ""
for page_num in range(len(pdf_reader.pages)):
text += pdf_reader.pages[page_num].extract_text()
return text
def tokenize_text(text, nlp_model):
doc = nlp_model(text, disable=["tagger", "parser"])
tokens = [(token.text.lower(), token.label_) for token in doc.ents]
return tokens
def extract_cgpa(resume_text):
# Define a regular expression pattern for CGPA extraction
cgpa_pattern = r'\b(?:CGPA|GPA|C\.G\.PA|Cumulative GPA)\s*:?[\s-]([0-9]+(?:\.[0-9]+)?)\b|\b([0-9]+(?:\.[0-9]+)?)\s(?:CGPA|GPA)\b'
# Search for CGPA pattern in the text
match = re.search(cgpa_pattern, resume_text, re.IGNORECASE)
# Check if a match is found
if match:
# Extract CGPA value
cgpa = match.group(1) if match.group(1) else match.group(2)
return float(cgpa)
else:
return None
def extract_skills(text, skills_keywords):
skills = [skill.lower()
for skill in skills_keywords if re.search(r'\b' + re.escape(skill.lower()) + r'\b', text.lower())]
return skills
def preprocess_text(text):
return word_tokenize(text.lower())
def train_doc2vec_model(documents):
model = Doc2Vec(vector_size=20, min_count=2, epochs=50)
model.build_vocab(documents)
model.train(documents, total_examples=model.corpus_count,
epochs=model.epochs)
return model
def calculate_similarity(model, text1, text2):
vector1 = model.infer_vector(preprocess_text(text1))
vector2 = model.infer_vector(preprocess_text(text2))
return model.dv.cosine_similarities(vector1, [vector2])[0]
def accuracy_calculation(true_positives, false_positives, false_negatives):
total = true_positives + false_positives + false_negatives
accuracy = true_positives / total if total != 0 else 0
return accuracy
# Streamlit Frontend
st.markdown("# Resume Matching Tool πŸ“ƒπŸ“ƒ")
st.markdown("An application to match resumes with a job description.")
# Sidebar - File Upload for Resumes
st.sidebar.markdown("## Upload Resumes PDF")
resumes_files = st.sidebar.file_uploader(
"Upload Resumes PDF", type=["pdf"], accept_multiple_files=True)
if resumes_files:
# Sidebar - File Upload for Job Descriptions
st.sidebar.markdown("## Upload Job Description PDF")
job_descriptions_file = st.sidebar.file_uploader(
"Upload Job Description PDF", type=["pdf"])
if job_descriptions_file:
# Backend Processing
job_description_text = extract_text_from_pdf(job_descriptions_file)
resumes_texts = [extract_text_from_pdf(
resume_file) for resume_file in resumes_files]
job_description_text = extract_text_from_pdf(job_descriptions_file)
job_description_tokens = tokenize_text(job_description_text, nlp)
# st.subheader("Matching Keywords")
# Initialize counters
overall_skill_matches = 0
overall_qualification_matches = 0
# Create a list to store individual results
results_list = []
job_skills = set()
job_qualifications = set()
for job_token, job_label in job_description_tokens:
if job_label == 'QUALIFICATION':
job_qualifications.add(job_token.replace('\n', ' '))
elif job_label == 'SKILLS':
job_skills.add(job_token.replace('\n', ' '))
job_skills_number = len(job_skills)
job_qualifications_number = len(job_qualifications)
# Lists to store counts of matched skills for all resumes
skills_counts_all_resumes = []
# Iterate over all uploaded resumes
for uploaded_resume in resumes_files:
resume_text = extract_text_from_pdf(uploaded_resume)
resume_tokens = tokenize_text(resume_text, nlp)
# Initialize counters for individual resume
skillMatch = 0
qualificationMatch = 0
cgpa = ""
# Lists to store matched skills and qualifications for each resume
matched_skills = set()
matched_qualifications = set()
email = set()
phone = set()
name = set()
# Compare the tokens in the resume with the job description
for resume_token, resume_label in resume_tokens:
for job_token, job_label in job_description_tokens:
if resume_token.lower().replace('\n', ' ') == job_token.lower().replace('\n', ' '):
if resume_label == 'SKILLS':
matched_skills.add(resume_token.replace('\n', ' '))
elif resume_label == 'QUALIFICATION':
matched_qualifications.add(resume_token.replace('\n', ' '))
elif resume_label == 'PHONE' and bool(float_digit_regex.match(resume_token)):
phone.add(resume_token)
elif resume_label == 'QUALIFICATION':
matched_qualifications.add(resume_token.replace('\n', ' '))
skillMatch = len(matched_skills)
qualificationMatch = len(matched_qualifications)
# Convert the list of emails to a set
email_set = set(re.findall(email_pattern, resume_text.replace('\n', ' ')))
email.update(email_set)
numberphone=""
for email_str in email:
numberphone = email_with_phone_regex.search(email_str)
if numberphone:
email.remove(email_str)
val=numberphone.group(1) or numberphone.group(2)
phone.add(val)
email.add(email_str.strip(val))
# Increment overall counters based on matches
overall_skill_matches += skillMatch
overall_qualification_matches += qualificationMatch
# Add count of matched skills for this resume to the list
skills_counts_all_resumes.append(
[resume_text.count(skill.lower()) for skill in job_skills])
# Create a dictionary for the current resume and append to the results list
result_dict = {
"Resume": uploaded_resume.name,
"Similarity Score": (skillMatch/job_skills_number)*100,
"Skill Matches": skillMatch,
"Matched Skills": matched_skills,
"CGPA": extract_cgpa(resume_text),
"Email": email,
"Phone": phone,
"Qualification Matches": qualificationMatch,
"Matched Qualifications": matched_qualifications
}
results_list.append(result_dict)
# Display overall matches
st.subheader("Overall Matches")
st.write(f"Total Skill Matches: {overall_skill_matches}")
st.write(
f"Total Qualification Matches: {overall_qualification_matches}")
st.write(f"Job Qualifications: {job_qualifications}")
st.write(f"Job Skills: {job_skills}")
# Display individual results in a table
results_df = pd.DataFrame(results_list)
st.subheader("Individual Results")
st.dataframe(results_df)
tagged_resumes = [TaggedDocument(words=preprocess_text(
text), tags=[str(i)]) for i, text in enumerate(resumes_texts)]
model_resumes = train_doc2vec_model(tagged_resumes)
st.subheader("\nHeatmap:")
# Get skills keywords from user input
skills_keywords_input = st.text_input(
"Enter skills keywords separated by commas (e.g., python, java, machine learning):")
skills_keywords = [skill.strip()
for skill in skills_keywords_input.split(',') if skill.strip()]
if skills_keywords:
# Calculate the similarity score between each skill keyword and the resume text
skills_similarity_scores = []
for resume_text in resumes_texts:
resume_text_similarity_scores = []
for skill in skills_keywords:
similarity_score = calculate_similarity(
model_resumes, resume_text, skill)
resume_text_similarity_scores.append(similarity_score)
skills_similarity_scores.append(resume_text_similarity_scores)
# Create a DataFrame with the similarity scores and set the index to the names of the PDFs
skills_similarity_df = pd.DataFrame(
skills_similarity_scores, columns=skills_keywords, index=[resume_file.name for resume_file in resumes_files])
# Plot the heatmap
fig, ax = plt.subplots(figsize=(12, 8))
sns.heatmap(skills_similarity_df,
cmap='YlGnBu', annot=True, fmt=".2f", ax=ax)
ax.set_title('Heatmap for Skills Similarity')
ax.set_xlabel('Skills')
ax.set_ylabel('Resumes')
# Rotate the y-axis labels for better readability
plt.yticks(rotation=0)
# Display the Matplotlib figure using st.pyplot()
st.pyplot(fig)
else:
st.write("Please enter at least one skill keyword.")
else:
st.warning("Please upload the Job Description PDF to proceed.")
else:
st.warning("Please upload Resumes PDF to proceed.")