File size: 31,760 Bytes
c13ec7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
// Complete Walkthrough Mode Implementation
// This replaces the incomplete walkthrough section in index.html

// Walkthrough Mode functionality
let walkthroughActive = false;
let walkthroughStep = 0;
let walkthroughTutorial = null;
let walkthroughTrainingSpeed = 2000; // Much slower training speed for walkthrough
let walkthroughInterval = null;
let walkthroughExplanationMode = false;

const walkthroughTutorials = {
    basics: {
        title: 'Neural Network Basics',
        task: 'and', // Use AND gate for demonstration
        steps: [
            {
                title: 'Welcome to Neural Networks! 🧠',
                content: 'Neural networks are inspired by the human brain. They consist of layers of interconnected neurons that process information. We\'ll use a simple AND gate to learn how they work step by step!',
                element: null,
                position: 'center',
                action: 'start'
            },
            {
                title: 'Input Layer (Blue Circles)',
                content: 'These blue circles are input neurons. For our AND gate, we have 2 inputs that can be either 0 or 1. Watch the numbers inside - they show the current input values being processed!',
                element: '#networkCanvas',
                position: 'right',
                highlight: {x: 50, y: 50, width: 100, height: 200},
                action: 'highlight_inputs'
            },
            {
                title: 'Hidden Layer (Green Circles)',
                content: 'These green neurons are the "thinking" layer. They receive signals from inputs, multiply them by weights, add biases, and decide how "excited" to get. The numbers show their activation levels!',
                element: '#networkCanvas',
                position: 'left',
                highlight: {x: 150, y: 50, width: 100, height: 200},
                action: 'highlight_hidden'
            },
            {
                title: 'Output Layer (Purple Circle)',
                content: 'This purple neuron gives us the final answer! For AND gate, it should output 1 only when BOTH inputs are 1. Right now it\'s making random guesses - that\'s why we need to train it!',
                element: '#networkCanvas',
                position: 'left',
                highlight: {x: 250, y: 120, width: 100, height: 60},
                action: 'highlight_output'
            },
            {
                title: 'Connections (Colored Lines)',
                content: 'These lines are connections with "weights". Green lines are positive (excite the next neuron), red lines are negative (inhibit it). Thicker lines = stronger connections. The AI learns by adjusting these!',
                element: '#networkCanvas',
                position: 'right',
                highlight: {x: 0, y: 0, width: 400, height: 300},
                action: 'highlight_weights'
            },
            {
                title: 'Training Data',
                content: 'Here\'s our training data! Each card shows: input values β†’ expected output. The AI will see these examples and learn the AND gate pattern. Notice the "Raw" prediction - it starts random!',
                element: '#taskOutput',
                position: 'top',
                highlight: {x: -10, y: -10, width: 'auto', height: 'auto'},
                action: 'highlight_data'
            },
            {
                title: 'Let\'s Start Training!',
                content: 'Now I\'ll start training VERY slowly so you can see every step. Watch how the neurons\' values change, connections strengthen/weaken, and the loss decreases as the AI learns!',
                element: '#trainBtn',
                position: 'top',
                highlight: {x: -5, y: -5, width: 'auto', height: 'auto'},
                action: 'start_training'
            }
        ]
    },
    training: {
        title: 'How Training Works',
        task: 'xor', // Use XOR for complexity
        steps: [
            {
                title: 'Welcome to AI Training! 🎯',
                content: 'Training is how AI learns! We\'ll use the XOR gate - a challenging problem that requires the AI to think in complex ways. Let\'s see how the network learns step by step.',
                element: null,
                position: 'center',
                action: 'start'
            },
            {
                title: 'Forward Propagation',
                content: 'Step 1: Forward pass! The input flows through the network like water through pipes. Each neuron receives inputs, multiplies by weights, adds bias, and applies activation. Watch the flow!',
                element: '#networkCanvas',
                position: 'right',
                highlight: {x: 0, y: 0, width: 400, height: 300},
                action: 'demo_forward'
            },
            {
                title: 'Making a Prediction',
                content: 'The output neuron gives us a prediction! For XOR: 0,0β†’0, 0,1β†’1, 1,0β†’1, 1,1β†’0. Right now it\'s wrong - see the red "Wrong" status. The raw output should be close to the target!',
                element: '#taskOutput',
                position: 'top',
                highlight: {x: -10, y: -10, width: 'auto', height: 'auto'},
                action: 'show_prediction'
            },
            {
                title: 'Calculating Loss',
                content: 'Loss measures how wrong we are! It\'s the difference between prediction and target, squared. High loss = very wrong. Low loss = very right. Watch this number in the stats panel!',
                element: '#lossValue',
                position: 'bottom',
                highlight: {x: -10, y: -10, width: 'auto', height: 'auto'},
                action: 'show_loss'
            },
            {
                title: 'Backpropagation Magic',
                content: 'Step 2: Backward pass! The AI traces back through the network asking "who\'s responsible for this error?" and adjusts weights accordingly. This is backpropagation - the heart of deep learning!',
                element: '#networkCanvas',
                position: 'left',
                highlight: {x: 0, y: 0, width: 400, height: 300},
                action: 'demo_backward'
            },
            {
                title: 'Weight Updates',
                content: 'The AI nudges each weight slightly in the direction that reduces error. Good connections get stronger, bad ones get weaker. Watch the line colors and thickness change!',
                element: '#networkCanvas',
                position: 'right',
                highlight: {x: 0, y: 0, width: 400, height: 300},
                action: 'show_weight_updates'
            },
            {
                title: 'Learning Progress',
                content: 'Each training cycle is called an "epoch". Watch the loss chart - it should generally go down as the AI gets better! Sometimes it goes up temporarily - that\'s normal during learning.',
                element: '#lossChart',
                position: 'right',
                highlight: {x: -10, y: -10, width: 'auto', height: 'auto'},
                action: 'show_progress'
            },
            {
                title: 'Continuous Learning',
                content: 'Now watch it train continuously! Each step: forward pass β†’ calculate loss β†’ backward pass β†’ update weights β†’ repeat. This is how all AI learns, from image recognition to chatbots!',
                element: null,
                position: 'center',
                action: 'continuous_training'
            }
        ]
    },
    visualization: {
        title: 'Understanding the Visualizations',
        task: 'classification', // Use 2D classification for visual demo
        steps: [
            {
                title: 'Reading AI Visualizations πŸ“Š',
                content: 'Visualizations help us understand what\'s happening inside AI! We\'ll use 2D classification - separating red and blue points in space - to see how neural networks think.',
                element: null,
                position: 'center',
                action: 'start'
            },
            {
                title: 'Network Diagram - The Brain Map',
                content: 'This shows the AI\'s structure! Circles = neurons (processing units), Lines = connections (information pathways). Colors show activity levels: bright = excited, dark = calm.',
                element: '#networkCanvas',
                position: 'right',
                highlight: {x: 0, y: 0, width: 400, height: 300},
                action: 'explain_network'
            },
            {
                title: 'Data Visualization - The Problem Space',
                content: 'This 2D plot shows our data! Red dots should be classified as 0, blue dots as 1. The AI needs to learn an invisible boundary that separates them correctly.',
                element: '#dataViz',
                position: 'left',
                highlight: {x: -10, y: -10, width: 'auto', height: 'auto'},
                action: 'explain_data_viz'
            },
            {
                title: 'Training Progress Chart',
                content: 'The loss chart shows learning over time! Starting high (confused), gradually decreasing (getting smarter). Flat periods mean it\'s thinking, sharp drops mean breakthroughs!',
                element: '#lossChart',
                position: 'right',
                highlight: {x: -10, y: -10, width: 'auto', height: 'auto'},
                action: 'explain_loss_chart'
            },
            {
                title: 'Prediction Cards - The Report Card',
                content: 'Each card shows: the input β†’ expected output. "Raw" = neuron\'s actual output (0-1), "Predicted" = final decision, Status = right/wrong. Green borders = correct predictions!',
                element: '#taskOutput',
                position: 'top',
                highlight: {x: -10, y: -10, width: 'auto', height: 'auto'},
                action: 'explain_predictions'
            },
            {
                title: 'Stats Panel - The Dashboard',
                content: 'Epochs = training cycles completed, Loss = how wrong we are, Accuracy = % correct predictions, Current = which example we\'re processing now. These tell the whole story!',
                element: '.stats-grid',
                position: 'bottom',
                highlight: {x: -10, y: -10, width: 'auto', height: 'auto'},
                action: 'explain_stats'
            },
            {
                title: 'Watching It All Together',
                content: 'Now watch everything update in harmony! Network neurons fire, data points get classified, loss decreases, accuracy increases. You\'re seeing the birth of artificial intelligence!',
                element: null,
                position: 'center',
                action: 'full_demo'
            }
        ]
    },
    logic: {
        title: 'Logic Gates Deep Dive',
        task: 'xor', // Start with XOR as the most interesting
        steps: [
            {
                title: 'Logic Gates - AI\'s Building Blocks πŸ”—',
                content: 'Logic gates are the foundation of all computing! We\'ll explore how neural networks learn AND, OR, and the famous XOR gate - the problem that sparked the deep learning revolution!',
                element: null,
                position: 'center',
                action: 'start'
            },
            {
                title: 'The XOR Challenge',
                content: 'XOR (exclusive or) outputs 1 when inputs are different. Seems simple, but it stumped early AI for decades! It\'s not "linearly separable" - you can\'t draw a straight line to separate the outputs.',
                element: '#taskOutput',
                position: 'top',
                highlight: {x: -10, y: -10, width: 'auto', height: 'auto'},
                action: 'explain_xor'
            },
            {
                title: 'Why XOR Needs Deep Networks',
                content: 'Look at our network: 2β†’12β†’8β†’1. We need these hidden layers! Each layer transforms the data, and together they can solve XOR. Single-layer networks can\'t do this!',
                element: '#networkCanvas',
                position: 'right',
                highlight: {x: 0, y: 0, width: 400, height: 300},
                action: 'explain_depth'
            },
            {
                title: 'Layer 1: Feature Detection',
                content: 'The first hidden layer (12 neurons) learns to detect patterns in the input. Some neurons might learn "both inputs high", others "both inputs low", etc. These become building blocks!',
                element: '#networkCanvas',
                position: 'left',
                highlight: {x: 100, y: 50, width: 80, height: 200},
                action: 'explain_layer1'
            },
            {
                title: 'Layer 2: Combination Logic',
                content: 'The second hidden layer (8 neurons) combines the features from layer 1. It might learn rules like "if feature A is active but feature B isn\'t, then activate". This creates complex logic!',
                element: '#networkCanvas',
                position: 'right',
                highlight: {x: 200, y: 80, width: 80, height: 140},
                action: 'explain_layer2'
            },
            {
                title: 'Output: The Final Decision',
                content: 'The output neuron combines all the complex features into a final decision. It learns to say "yes" (1) when the XOR pattern is detected, "no" (0) otherwise. Magic!',
                element: '#networkCanvas',
                position: 'left',
                highlight: {x: 300, y: 120, width: 80, height: 60},
                action: 'explain_output'
            },
            {
                title: 'Training Process',
                content: 'Watch as the network slowly learns XOR! Early on, it makes random guesses. Gradually, it discovers the pattern. You\'ll see the accuracy climb from 25% (random) to 100% (perfect)!',
                element: '#accuracyValue',
                position: 'bottom',
                highlight: {x: -10, y: -10, width: 'auto', height: 'auto'},
                action: 'demo_training'
            },
            {
                title: 'The Learning Moment',
                content: 'There\'s often a "eureka moment" where the AI suddenly "gets it" - loss drops rapidly, accuracy jumps! This is the network discovering the XOR pattern. It\'s like watching intelligence emerge!',
                element: '#lossChart',
                position: 'right',
                highlight: {x: -10, y: -10, width: 'auto', height: 'auto'},
                action: 'show_breakthrough'
            }
        ]
    }
};

// Walkthrough DOM elements
const walkthroughOverlay = document.getElementById('walkthroughOverlay');
const walkthroughHighlight = document.getElementById('walkthroughHighlight');
const walkthroughPopup = document.getElementById('walkthroughPopup');
const walkthroughTitle = document.getElementById('walkthroughTitle');
const walkthroughContent = document.getElementById('walkthroughContent');
const walkthroughProgress = document.getElementById('walkthroughProgress');
const walkthroughStepSpan = document.getElementById('walkthroughStep');
const walkthroughTotal = document.getElementById('walkthroughTotal');
const walkthroughIndicator = document.getElementById('walkthroughIndicator');
const walkthroughPrev = document.getElementById('walkthroughPrev');
const walkthroughNext = document.getElementById('walkthroughNext');
const walkthroughSkip = document.getElementById('walkthroughSkip');

// Start walkthrough function
function startWalkthrough(tutorialId) {
    const tutorial = walkthroughTutorials[tutorialId];
    if (!tutorial) return;

    walkthroughActive = true;
    walkthroughTutorial = tutorial;
    walkthroughStep = 0;
    walkthroughExplanationMode = true;

    // Load the tutorial task if specified
    if (tutorial.task) {
        currentCategory = 'fundamentals'; // Most tutorials use fundamentals
        selectTask(tutorial.task);
        // Wait a moment for task to load
        setTimeout(() => {
            showWalkthroughStep();
        }, 500);
    } else {
        showWalkthroughStep();
    }

    // Hide walkthrough mode menu
    document.getElementById('walkthroughMode').style.display = 'none';
    
    // Show indicator
    walkthroughIndicator.style.display = 'block';
}

// Show current walkthrough step
function showWalkthroughStep() {
    if (!walkthroughTutorial || walkthroughStep >= walkthroughTutorial.steps.length) {
        endWalkthrough();
        return;
    }

    const step = walkthroughTutorial.steps[walkthroughStep];
    
    // Update progress
    walkthroughProgress.style.display = 'block';
    walkthroughStepSpan.textContent = walkthroughStep + 1;
    walkthroughTotal.textContent = walkthroughTutorial.steps.length;

    // Update popup content
    walkthroughTitle.textContent = step.title;
    walkthroughContent.textContent = step.content;

    // Handle special actions
    if (step.action) {
        executeWalkthroughAction(step.action);
    }

    // Position popup and highlight
    if (step.element) {
        positionWalkthroughElements(step);
    } else {
        // Center popup for intro steps
        centerWalkthroughPopup();
        walkthroughHighlight.style.display = 'none';
    }

    // Show overlay and popup
    walkthroughOverlay.style.display = 'block';
    walkthroughPopup.style.display = 'block';

    // Update buttons
    walkthroughPrev.style.display = walkthroughStep > 0 ? 'block' : 'none';
    walkthroughNext.textContent = walkthroughStep === walkthroughTutorial.steps.length - 1 ? 'Finish' : 'Next';
}

// Position walkthrough elements
function positionWalkthroughElements(step) {
    const element = document.querySelector(step.element);
    if (!element) return;

    const rect = element.getBoundingClientRect();
    const popup = walkthroughPopup;
    
    // Position highlight
    if (step.highlight) {
        walkthroughHighlight.style.display = 'block';
        if (step.highlight.width === 'auto') {
            walkthroughHighlight.style.left = (rect.left - 10) + 'px';
            walkthroughHighlight.style.top = (rect.top - 10) + 'px';
            walkthroughHighlight.style.width = (rect.width + 20) + 'px';
            walkthroughHighlight.style.height = (rect.height + 20) + 'px';
        } else {
            walkthroughHighlight.style.left = (rect.left + step.highlight.x) + 'px';
            walkthroughHighlight.style.top = (rect.top + step.highlight.y) + 'px';
            walkthroughHighlight.style.width = step.highlight.width + 'px';
            walkthroughHighlight.style.height = step.highlight.height + 'px';
        }
    } else {
        walkthroughHighlight.style.display = 'none';
    }

    // Position popup based on position preference
    popup.className = 'walkthrough-popup ' + step.position;
    
    const popupRect = popup.getBoundingClientRect();
    let left, top;

    switch (step.position) {
        case 'top':
            left = rect.left + rect.width / 2 - popupRect.width / 2;
            top = rect.top - popupRect.height - 20;
            break;
        case 'bottom':
            left = rect.left + rect.width / 2 - popupRect.width / 2;
            top = rect.bottom + 20;
            break;
        case 'left':
            left = rect.left - popupRect.width - 20;
            top = rect.top + rect.height / 2 - popupRect.height / 2;
            break;
        case 'right':
            left = rect.right + 20;
            top = rect.top + rect.height / 2 - popupRect.height / 2;
            break;
        default:
            centerWalkthroughPopup();
            return;
    }

    // Keep popup on screen
    left = Math.max(10, Math.min(left, window.innerWidth - popupRect.width - 10));
    top = Math.max(10, Math.min(top, window.innerHeight - popupRect.height - 10));

    popup.style.left = left + 'px';
    popup.style.top = top + 'px';
}

// Center walkthrough popup
function centerWalkthroughPopup() {
    const popup = walkthroughPopup;
    popup.className = 'walkthrough-popup center';
    popup.style.left = '50%';
    popup.style.top = '50%';
    popup.style.transform = 'translate(-50%, -50%)';
}

// Execute special walkthrough actions
function executeWalkthroughAction(action) {
    switch (action) {
        case 'start':
            // Reset network and prepare for demonstration
            if (currentTask && network) {
                reset();
            }
            break;
            
        case 'start_training':
            // Start very slow training for educational purposes
            if (!isTraining && currentTask) {
                trainBtn.click();
            }
            break;
            
        case 'demo_forward':
            // Slow down even more to show forward propagation
            walkthroughTrainingSpeed = 3000;
            break;
            
        case 'demo_backward':
            // Highlight the backward pass concept
            addWalkthroughExplanation('Backpropagation traces the error backwards through each connection, calculating how much each weight contributed to the mistake.');
            break;
            
        case 'show_weight_updates':
            // Highlight weight changes
            addWalkthroughExplanation('Watch the connection lines change! Thicker lines = stronger weights, colors show positive (green) vs negative (red) influence.');
            break;
            
        case 'continuous_training':
            // Return to normal-ish speed but still educational
            walkthroughTrainingSpeed = 1000;
            break;
            
        case 'explain_network':
            // Add network explanation overlay
            addWalkthroughExplanation('Bright neurons are highly activated (excited), dark neurons are inactive (calm). The patterns show how information flows!');
            break;
            
        case 'explain_xor':
            // Special explanation for XOR challenge
            addWalkthroughExplanation('XOR is special! Unlike AND/OR, you cannot draw a single straight line to separate the correct outputs. This requires complex thinking!');
            break;
            
        case 'demo_training':
            // Start training and monitor for breakthrough moments
            if (!isTraining && currentTask) {
                trainBtn.click();
                monitorTrainingProgress();
            }
            break;
    }
}

// Add temporary explanation overlay
function addWalkthroughExplanation(text) {
    const explanation = document.createElement('div');
    explanation.style.cssText = `
        position: fixed;
        bottom: 100px;
        left: 50%;
        transform: translateX(-50%);
        background: rgba(16, 185, 129, 0.95);
        color: white;
        padding: 1rem 2rem;
        border-radius: 0.5rem;
        font-size: 0.9rem;
        max-width: 400px;
        text-align: center;
        z-index: 10003;
        animation: fadeInOut 4s ease-in-out;
    `;
    explanation.textContent = text;
    document.body.appendChild(explanation);
    
    setTimeout(() => {
        if (explanation.parentNode) {
            explanation.parentNode.removeChild(explanation);
        }
    }, 4000);
}

// Add CSS animation for explanations
const walkthroughStyle = document.createElement('style');
walkthroughStyle.textContent = `
    @keyframes fadeInOut {
        0% { opacity: 0; transform: translateX(-50%) translateY(20px); }
        10% { opacity: 1; transform: translateX(-50%) translateY(0); }
        90% { opacity: 1; transform: translateX(-50%) translateY(0); }
        100% { opacity: 0; transform: translateX(-50%) translateY(-20px); }
    }
`;
document.head.appendChild(walkthroughStyle);

// Monitor training for educational moments
function monitorTrainingProgress() {
    if (!walkthroughActive) return;
    
    const checkProgress = () => {
        if (!isTraining || !walkthroughActive) return;
        
        // Look for breakthrough moments (rapid loss decrease)
        if (lossHistory.length > 10) {
            const recent = lossHistory.slice(-5);
            const older = lossHistory.slice(-10, -5);
            const recentAvg = recent.reduce((a, b) => a + b) / recent.length;
            const olderAvg = older.reduce((a, b) => a + b) / older.length;
            
            if (olderAvg > 0.5 && recentAvg < 0.1) {
                addWalkthroughExplanation('πŸŽ‰ Breakthrough moment! The AI just discovered the pattern - watch the loss plummet!');
            }
        }
        
        // Check for high accuracy achievements
        if (accuracy > 0.9 && epoch > 50) {
            addWalkthroughExplanation('🎯 Excellent! The AI has mastered this pattern with over 90% accuracy!');
        }
        
        setTimeout(checkProgress, 2000);
    };
    
    setTimeout(checkProgress, 5000);
}

// Navigation functions
function nextWalkthroughStep() {
    walkthroughStep++;
    showWalkthroughStep();
}

function prevWalkthroughStep() {
    if (walkthroughStep > 0) {
        walkthroughStep--;
        showWalkthroughStep();
    }
}

function endWalkthrough() {
    walkthroughActive = false;
    walkthroughTutorial = null;
    walkthroughStep = 0;
    walkthroughExplanationMode = false;
    walkthroughTrainingSpeed = 2000; // Reset to slow but not too slow

    // Hide walkthrough UI
    walkthroughOverlay.style.display = 'none';
    walkthroughPopup.style.display = 'none';
    walkthroughHighlight.style.display = 'none';
    walkthroughProgress.style.display = 'none';
    walkthroughIndicator.style.display = 'none';

    // Clear any intervals
    if (walkthroughInterval) {
        clearInterval(walkthroughInterval);
        walkthroughInterval = null;
    }

    // Show completion message
    addWalkthroughExplanation('πŸŽ“ Walkthrough complete! You now understand neural networks better. Try exploring other tasks!');

    // Return to normal training speed when walkthrough ends
    setTimeout(() => {
        walkthroughTrainingSpeed = 100; // Back to normal speed
    }, 5000);
}

// Event listeners for walkthrough
walkthroughNext.addEventListener('click', nextWalkthroughStep);
walkthroughPrev.addEventListener('click', prevWalkthroughStep);
walkthroughSkip.addEventListener('click', endWalkthrough);

// Keyboard navigation for walkthrough
document.addEventListener('keydown', (e) => {
    if (!walkthroughActive) return;
    
    if (e.key === 'ArrowRight' || e.key === ' ') {
        e.preventDefault();
        nextWalkthroughStep();
    } else if (e.key === 'ArrowLeft') {
        e.preventDefault();
        prevWalkthroughStep();
    } else if (e.key === 'Escape') {
        e.preventDefault();
        endWalkthrough();
    }
});

// Enhanced training step for walkthrough mode
function walkthroughTrainStep() {
    if (!walkthroughActive) {
        trainStep(); // Use normal training
        return;
    }

    // Detailed step-by-step training for education
    const sample = currentTask.data[currentSample];
    
    // 1. Forward propagation with detailed explanation
    const output = network.forward(sample.input);
    activations = [...network.activations];
    
    if (walkthroughExplanationMode && epoch % 10 === 0) {
        const explanation = `Step ${epoch}: Processing ${sample.label}. ` +
            `Input: [${sample.input.join(', ')}] β†’ ` +
            `Hidden activations β†’ ` +
            `Output: ${output[0].toFixed(3)} (target: ${sample.target[0]})`;
        console.log(explanation); // For developers who open console
    }

    // 2. Calculate loss with explanation
    const result = network.trainBatch([sample]);
    currentLoss = result.loss;
    weightChanges = result.weightChanges;
    
    // 3. Update tracking variables
    lossHistory.push(result.loss);
    if (lossHistory.length > 100) lossHistory.shift();
    
    // 4. Calculate predictions for all samples
    const newPredictions = currentTask.data.map(data => {
        const output = network.forward(data.input);
        const rawOutput = output[0];
        
        let predicted, correct;
        if (currentTask.isRegression) {
            predicted = rawOutput.toFixed(2);
            let tolerance = 0.1;
            
            if (currentTask.title.includes('Autoencoder')) {
                tolerance = 0.2;
                const allOutputs = network.forward(data.input);
                let totalError = 0;
                for (let j = 0; j < data.target.length; j++) {
                    totalError += Math.abs(allOutputs[j] - data.target[j]);
                }
                const avgError = totalError / data.target.length;
                correct = avgError < tolerance;
            } else {
                correct = Math.abs(rawOutput - data.target[0]) < tolerance;
            }
        } else {
            predicted = rawOutput >= 0.5 ? 1 : 0;
            const target = data.target[0];
            correct = predicted === target;
        }
        
        return {
            ...data,
            output: rawOutput,
            predicted: predicted,
            correct: correct
        };
    });
    predictions = newPredictions;
    
    // 5. Update metrics
    const correct = newPredictions.filter(p => p.correct).length;
    accuracy = correct / newPredictions.length;
    
    const totalLoss = newPredictions.reduce((sum, p) => 
        sum + Math.pow(p.target[0] - p.output, 2), 0) / newPredictions.length;
    avgLoss = totalLoss;
    
    currentSample = (currentSample + 1) % currentTask.data.length;
    epoch++;
    
    // 6. Update UI
    updateUI();
    
    // 7. Special walkthrough feedback
    if (walkthroughActive && epoch % 20 === 0) {
        const accuracyPercent = (accuracy * 100).toFixed(1);
        if (accuracy > 0.8) {
            addWalkthroughExplanation(`πŸŽ‰ Great progress! ${accuracyPercent}% accuracy - the AI is learning the pattern!`);
        } else if (accuracy > 0.5) {
            addWalkthroughExplanation(`πŸ“ˆ Learning... ${accuracyPercent}% accuracy. Watch the weights adapt!`);
        }
    }
}

// Override the original trainStep function when in walkthrough mode
const originalTrainStep = trainStep;
trainStep = function() {
    if (walkthroughActive) {
        walkthroughTrainStep();
    } else {
        originalTrainStep();
    }
};

// Override training button behavior for walkthrough mode
const originalTrainBtnClick = trainBtn.onclick;
trainBtn.addEventListener('click', (e) => {
    if (walkthroughActive) {
        // Use much slower speed in walkthrough mode
        isTraining = !isTraining;
        
        if (isTraining) {
            trainBtn.innerHTML = `
                <svg class="icon" fill="currentColor" viewBox="0 0 24 24">
                    <path d="M6 19h4V5H6v14zm8-14v14h4V5h-4z"/>
                </svg>
                Pause Training
            `;
            trainBtn.className = 'btn btn-pause';
            
            trainInterval = setInterval(trainStep, walkthroughTrainingSpeed);
        } else {
            trainBtn.innerHTML = `
                <svg class="icon" fill="currentColor" viewBox="0 0 24 24">
                    <path d="M8 5v14l11-7z"/>
                </svg>
                Start Training
            `;
            trainBtn.className = 'btn btn-start';
            
            clearInterval(trainInterval);
        }
        
        e.stopPropagation();
        return false;
    }
});

console.log('πŸŽ“ Walkthrough mode enhanced! Users can now learn step-by-step how neural networks work.');