ai-labs / walkthrough-enhancement.js
ProCreations's picture
Complete walkthrough mode with educational features and slow training
c13ec7b verified
raw
history blame
31.8 kB
// Complete Walkthrough Mode Implementation
// This replaces the incomplete walkthrough section in index.html
// Walkthrough Mode functionality
let walkthroughActive = false;
let walkthroughStep = 0;
let walkthroughTutorial = null;
let walkthroughTrainingSpeed = 2000; // Much slower training speed for walkthrough
let walkthroughInterval = null;
let walkthroughExplanationMode = false;
const walkthroughTutorials = {
basics: {
title: 'Neural Network Basics',
task: 'and', // Use AND gate for demonstration
steps: [
{
title: 'Welcome to Neural Networks! 🧠',
content: 'Neural networks are inspired by the human brain. They consist of layers of interconnected neurons that process information. We\'ll use a simple AND gate to learn how they work step by step!',
element: null,
position: 'center',
action: 'start'
},
{
title: 'Input Layer (Blue Circles)',
content: 'These blue circles are input neurons. For our AND gate, we have 2 inputs that can be either 0 or 1. Watch the numbers inside - they show the current input values being processed!',
element: '#networkCanvas',
position: 'right',
highlight: {x: 50, y: 50, width: 100, height: 200},
action: 'highlight_inputs'
},
{
title: 'Hidden Layer (Green Circles)',
content: 'These green neurons are the "thinking" layer. They receive signals from inputs, multiply them by weights, add biases, and decide how "excited" to get. The numbers show their activation levels!',
element: '#networkCanvas',
position: 'left',
highlight: {x: 150, y: 50, width: 100, height: 200},
action: 'highlight_hidden'
},
{
title: 'Output Layer (Purple Circle)',
content: 'This purple neuron gives us the final answer! For AND gate, it should output 1 only when BOTH inputs are 1. Right now it\'s making random guesses - that\'s why we need to train it!',
element: '#networkCanvas',
position: 'left',
highlight: {x: 250, y: 120, width: 100, height: 60},
action: 'highlight_output'
},
{
title: 'Connections (Colored Lines)',
content: 'These lines are connections with "weights". Green lines are positive (excite the next neuron), red lines are negative (inhibit it). Thicker lines = stronger connections. The AI learns by adjusting these!',
element: '#networkCanvas',
position: 'right',
highlight: {x: 0, y: 0, width: 400, height: 300},
action: 'highlight_weights'
},
{
title: 'Training Data',
content: 'Here\'s our training data! Each card shows: input values β†’ expected output. The AI will see these examples and learn the AND gate pattern. Notice the "Raw" prediction - it starts random!',
element: '#taskOutput',
position: 'top',
highlight: {x: -10, y: -10, width: 'auto', height: 'auto'},
action: 'highlight_data'
},
{
title: 'Let\'s Start Training!',
content: 'Now I\'ll start training VERY slowly so you can see every step. Watch how the neurons\' values change, connections strengthen/weaken, and the loss decreases as the AI learns!',
element: '#trainBtn',
position: 'top',
highlight: {x: -5, y: -5, width: 'auto', height: 'auto'},
action: 'start_training'
}
]
},
training: {
title: 'How Training Works',
task: 'xor', // Use XOR for complexity
steps: [
{
title: 'Welcome to AI Training! 🎯',
content: 'Training is how AI learns! We\'ll use the XOR gate - a challenging problem that requires the AI to think in complex ways. Let\'s see how the network learns step by step.',
element: null,
position: 'center',
action: 'start'
},
{
title: 'Forward Propagation',
content: 'Step 1: Forward pass! The input flows through the network like water through pipes. Each neuron receives inputs, multiplies by weights, adds bias, and applies activation. Watch the flow!',
element: '#networkCanvas',
position: 'right',
highlight: {x: 0, y: 0, width: 400, height: 300},
action: 'demo_forward'
},
{
title: 'Making a Prediction',
content: 'The output neuron gives us a prediction! For XOR: 0,0β†’0, 0,1β†’1, 1,0β†’1, 1,1β†’0. Right now it\'s wrong - see the red "Wrong" status. The raw output should be close to the target!',
element: '#taskOutput',
position: 'top',
highlight: {x: -10, y: -10, width: 'auto', height: 'auto'},
action: 'show_prediction'
},
{
title: 'Calculating Loss',
content: 'Loss measures how wrong we are! It\'s the difference between prediction and target, squared. High loss = very wrong. Low loss = very right. Watch this number in the stats panel!',
element: '#lossValue',
position: 'bottom',
highlight: {x: -10, y: -10, width: 'auto', height: 'auto'},
action: 'show_loss'
},
{
title: 'Backpropagation Magic',
content: 'Step 2: Backward pass! The AI traces back through the network asking "who\'s responsible for this error?" and adjusts weights accordingly. This is backpropagation - the heart of deep learning!',
element: '#networkCanvas',
position: 'left',
highlight: {x: 0, y: 0, width: 400, height: 300},
action: 'demo_backward'
},
{
title: 'Weight Updates',
content: 'The AI nudges each weight slightly in the direction that reduces error. Good connections get stronger, bad ones get weaker. Watch the line colors and thickness change!',
element: '#networkCanvas',
position: 'right',
highlight: {x: 0, y: 0, width: 400, height: 300},
action: 'show_weight_updates'
},
{
title: 'Learning Progress',
content: 'Each training cycle is called an "epoch". Watch the loss chart - it should generally go down as the AI gets better! Sometimes it goes up temporarily - that\'s normal during learning.',
element: '#lossChart',
position: 'right',
highlight: {x: -10, y: -10, width: 'auto', height: 'auto'},
action: 'show_progress'
},
{
title: 'Continuous Learning',
content: 'Now watch it train continuously! Each step: forward pass β†’ calculate loss β†’ backward pass β†’ update weights β†’ repeat. This is how all AI learns, from image recognition to chatbots!',
element: null,
position: 'center',
action: 'continuous_training'
}
]
},
visualization: {
title: 'Understanding the Visualizations',
task: 'classification', // Use 2D classification for visual demo
steps: [
{
title: 'Reading AI Visualizations πŸ“Š',
content: 'Visualizations help us understand what\'s happening inside AI! We\'ll use 2D classification - separating red and blue points in space - to see how neural networks think.',
element: null,
position: 'center',
action: 'start'
},
{
title: 'Network Diagram - The Brain Map',
content: 'This shows the AI\'s structure! Circles = neurons (processing units), Lines = connections (information pathways). Colors show activity levels: bright = excited, dark = calm.',
element: '#networkCanvas',
position: 'right',
highlight: {x: 0, y: 0, width: 400, height: 300},
action: 'explain_network'
},
{
title: 'Data Visualization - The Problem Space',
content: 'This 2D plot shows our data! Red dots should be classified as 0, blue dots as 1. The AI needs to learn an invisible boundary that separates them correctly.',
element: '#dataViz',
position: 'left',
highlight: {x: -10, y: -10, width: 'auto', height: 'auto'},
action: 'explain_data_viz'
},
{
title: 'Training Progress Chart',
content: 'The loss chart shows learning over time! Starting high (confused), gradually decreasing (getting smarter). Flat periods mean it\'s thinking, sharp drops mean breakthroughs!',
element: '#lossChart',
position: 'right',
highlight: {x: -10, y: -10, width: 'auto', height: 'auto'},
action: 'explain_loss_chart'
},
{
title: 'Prediction Cards - The Report Card',
content: 'Each card shows: the input β†’ expected output. "Raw" = neuron\'s actual output (0-1), "Predicted" = final decision, Status = right/wrong. Green borders = correct predictions!',
element: '#taskOutput',
position: 'top',
highlight: {x: -10, y: -10, width: 'auto', height: 'auto'},
action: 'explain_predictions'
},
{
title: 'Stats Panel - The Dashboard',
content: 'Epochs = training cycles completed, Loss = how wrong we are, Accuracy = % correct predictions, Current = which example we\'re processing now. These tell the whole story!',
element: '.stats-grid',
position: 'bottom',
highlight: {x: -10, y: -10, width: 'auto', height: 'auto'},
action: 'explain_stats'
},
{
title: 'Watching It All Together',
content: 'Now watch everything update in harmony! Network neurons fire, data points get classified, loss decreases, accuracy increases. You\'re seeing the birth of artificial intelligence!',
element: null,
position: 'center',
action: 'full_demo'
}
]
},
logic: {
title: 'Logic Gates Deep Dive',
task: 'xor', // Start with XOR as the most interesting
steps: [
{
title: 'Logic Gates - AI\'s Building Blocks πŸ”—',
content: 'Logic gates are the foundation of all computing! We\'ll explore how neural networks learn AND, OR, and the famous XOR gate - the problem that sparked the deep learning revolution!',
element: null,
position: 'center',
action: 'start'
},
{
title: 'The XOR Challenge',
content: 'XOR (exclusive or) outputs 1 when inputs are different. Seems simple, but it stumped early AI for decades! It\'s not "linearly separable" - you can\'t draw a straight line to separate the outputs.',
element: '#taskOutput',
position: 'top',
highlight: {x: -10, y: -10, width: 'auto', height: 'auto'},
action: 'explain_xor'
},
{
title: 'Why XOR Needs Deep Networks',
content: 'Look at our network: 2β†’12β†’8β†’1. We need these hidden layers! Each layer transforms the data, and together they can solve XOR. Single-layer networks can\'t do this!',
element: '#networkCanvas',
position: 'right',
highlight: {x: 0, y: 0, width: 400, height: 300},
action: 'explain_depth'
},
{
title: 'Layer 1: Feature Detection',
content: 'The first hidden layer (12 neurons) learns to detect patterns in the input. Some neurons might learn "both inputs high", others "both inputs low", etc. These become building blocks!',
element: '#networkCanvas',
position: 'left',
highlight: {x: 100, y: 50, width: 80, height: 200},
action: 'explain_layer1'
},
{
title: 'Layer 2: Combination Logic',
content: 'The second hidden layer (8 neurons) combines the features from layer 1. It might learn rules like "if feature A is active but feature B isn\'t, then activate". This creates complex logic!',
element: '#networkCanvas',
position: 'right',
highlight: {x: 200, y: 80, width: 80, height: 140},
action: 'explain_layer2'
},
{
title: 'Output: The Final Decision',
content: 'The output neuron combines all the complex features into a final decision. It learns to say "yes" (1) when the XOR pattern is detected, "no" (0) otherwise. Magic!',
element: '#networkCanvas',
position: 'left',
highlight: {x: 300, y: 120, width: 80, height: 60},
action: 'explain_output'
},
{
title: 'Training Process',
content: 'Watch as the network slowly learns XOR! Early on, it makes random guesses. Gradually, it discovers the pattern. You\'ll see the accuracy climb from 25% (random) to 100% (perfect)!',
element: '#accuracyValue',
position: 'bottom',
highlight: {x: -10, y: -10, width: 'auto', height: 'auto'},
action: 'demo_training'
},
{
title: 'The Learning Moment',
content: 'There\'s often a "eureka moment" where the AI suddenly "gets it" - loss drops rapidly, accuracy jumps! This is the network discovering the XOR pattern. It\'s like watching intelligence emerge!',
element: '#lossChart',
position: 'right',
highlight: {x: -10, y: -10, width: 'auto', height: 'auto'},
action: 'show_breakthrough'
}
]
}
};
// Walkthrough DOM elements
const walkthroughOverlay = document.getElementById('walkthroughOverlay');
const walkthroughHighlight = document.getElementById('walkthroughHighlight');
const walkthroughPopup = document.getElementById('walkthroughPopup');
const walkthroughTitle = document.getElementById('walkthroughTitle');
const walkthroughContent = document.getElementById('walkthroughContent');
const walkthroughProgress = document.getElementById('walkthroughProgress');
const walkthroughStepSpan = document.getElementById('walkthroughStep');
const walkthroughTotal = document.getElementById('walkthroughTotal');
const walkthroughIndicator = document.getElementById('walkthroughIndicator');
const walkthroughPrev = document.getElementById('walkthroughPrev');
const walkthroughNext = document.getElementById('walkthroughNext');
const walkthroughSkip = document.getElementById('walkthroughSkip');
// Start walkthrough function
function startWalkthrough(tutorialId) {
const tutorial = walkthroughTutorials[tutorialId];
if (!tutorial) return;
walkthroughActive = true;
walkthroughTutorial = tutorial;
walkthroughStep = 0;
walkthroughExplanationMode = true;
// Load the tutorial task if specified
if (tutorial.task) {
currentCategory = 'fundamentals'; // Most tutorials use fundamentals
selectTask(tutorial.task);
// Wait a moment for task to load
setTimeout(() => {
showWalkthroughStep();
}, 500);
} else {
showWalkthroughStep();
}
// Hide walkthrough mode menu
document.getElementById('walkthroughMode').style.display = 'none';
// Show indicator
walkthroughIndicator.style.display = 'block';
}
// Show current walkthrough step
function showWalkthroughStep() {
if (!walkthroughTutorial || walkthroughStep >= walkthroughTutorial.steps.length) {
endWalkthrough();
return;
}
const step = walkthroughTutorial.steps[walkthroughStep];
// Update progress
walkthroughProgress.style.display = 'block';
walkthroughStepSpan.textContent = walkthroughStep + 1;
walkthroughTotal.textContent = walkthroughTutorial.steps.length;
// Update popup content
walkthroughTitle.textContent = step.title;
walkthroughContent.textContent = step.content;
// Handle special actions
if (step.action) {
executeWalkthroughAction(step.action);
}
// Position popup and highlight
if (step.element) {
positionWalkthroughElements(step);
} else {
// Center popup for intro steps
centerWalkthroughPopup();
walkthroughHighlight.style.display = 'none';
}
// Show overlay and popup
walkthroughOverlay.style.display = 'block';
walkthroughPopup.style.display = 'block';
// Update buttons
walkthroughPrev.style.display = walkthroughStep > 0 ? 'block' : 'none';
walkthroughNext.textContent = walkthroughStep === walkthroughTutorial.steps.length - 1 ? 'Finish' : 'Next';
}
// Position walkthrough elements
function positionWalkthroughElements(step) {
const element = document.querySelector(step.element);
if (!element) return;
const rect = element.getBoundingClientRect();
const popup = walkthroughPopup;
// Position highlight
if (step.highlight) {
walkthroughHighlight.style.display = 'block';
if (step.highlight.width === 'auto') {
walkthroughHighlight.style.left = (rect.left - 10) + 'px';
walkthroughHighlight.style.top = (rect.top - 10) + 'px';
walkthroughHighlight.style.width = (rect.width + 20) + 'px';
walkthroughHighlight.style.height = (rect.height + 20) + 'px';
} else {
walkthroughHighlight.style.left = (rect.left + step.highlight.x) + 'px';
walkthroughHighlight.style.top = (rect.top + step.highlight.y) + 'px';
walkthroughHighlight.style.width = step.highlight.width + 'px';
walkthroughHighlight.style.height = step.highlight.height + 'px';
}
} else {
walkthroughHighlight.style.display = 'none';
}
// Position popup based on position preference
popup.className = 'walkthrough-popup ' + step.position;
const popupRect = popup.getBoundingClientRect();
let left, top;
switch (step.position) {
case 'top':
left = rect.left + rect.width / 2 - popupRect.width / 2;
top = rect.top - popupRect.height - 20;
break;
case 'bottom':
left = rect.left + rect.width / 2 - popupRect.width / 2;
top = rect.bottom + 20;
break;
case 'left':
left = rect.left - popupRect.width - 20;
top = rect.top + rect.height / 2 - popupRect.height / 2;
break;
case 'right':
left = rect.right + 20;
top = rect.top + rect.height / 2 - popupRect.height / 2;
break;
default:
centerWalkthroughPopup();
return;
}
// Keep popup on screen
left = Math.max(10, Math.min(left, window.innerWidth - popupRect.width - 10));
top = Math.max(10, Math.min(top, window.innerHeight - popupRect.height - 10));
popup.style.left = left + 'px';
popup.style.top = top + 'px';
}
// Center walkthrough popup
function centerWalkthroughPopup() {
const popup = walkthroughPopup;
popup.className = 'walkthrough-popup center';
popup.style.left = '50%';
popup.style.top = '50%';
popup.style.transform = 'translate(-50%, -50%)';
}
// Execute special walkthrough actions
function executeWalkthroughAction(action) {
switch (action) {
case 'start':
// Reset network and prepare for demonstration
if (currentTask && network) {
reset();
}
break;
case 'start_training':
// Start very slow training for educational purposes
if (!isTraining && currentTask) {
trainBtn.click();
}
break;
case 'demo_forward':
// Slow down even more to show forward propagation
walkthroughTrainingSpeed = 3000;
break;
case 'demo_backward':
// Highlight the backward pass concept
addWalkthroughExplanation('Backpropagation traces the error backwards through each connection, calculating how much each weight contributed to the mistake.');
break;
case 'show_weight_updates':
// Highlight weight changes
addWalkthroughExplanation('Watch the connection lines change! Thicker lines = stronger weights, colors show positive (green) vs negative (red) influence.');
break;
case 'continuous_training':
// Return to normal-ish speed but still educational
walkthroughTrainingSpeed = 1000;
break;
case 'explain_network':
// Add network explanation overlay
addWalkthroughExplanation('Bright neurons are highly activated (excited), dark neurons are inactive (calm). The patterns show how information flows!');
break;
case 'explain_xor':
// Special explanation for XOR challenge
addWalkthroughExplanation('XOR is special! Unlike AND/OR, you cannot draw a single straight line to separate the correct outputs. This requires complex thinking!');
break;
case 'demo_training':
// Start training and monitor for breakthrough moments
if (!isTraining && currentTask) {
trainBtn.click();
monitorTrainingProgress();
}
break;
}
}
// Add temporary explanation overlay
function addWalkthroughExplanation(text) {
const explanation = document.createElement('div');
explanation.style.cssText = `
position: fixed;
bottom: 100px;
left: 50%;
transform: translateX(-50%);
background: rgba(16, 185, 129, 0.95);
color: white;
padding: 1rem 2rem;
border-radius: 0.5rem;
font-size: 0.9rem;
max-width: 400px;
text-align: center;
z-index: 10003;
animation: fadeInOut 4s ease-in-out;
`;
explanation.textContent = text;
document.body.appendChild(explanation);
setTimeout(() => {
if (explanation.parentNode) {
explanation.parentNode.removeChild(explanation);
}
}, 4000);
}
// Add CSS animation for explanations
const walkthroughStyle = document.createElement('style');
walkthroughStyle.textContent = `
@keyframes fadeInOut {
0% { opacity: 0; transform: translateX(-50%) translateY(20px); }
10% { opacity: 1; transform: translateX(-50%) translateY(0); }
90% { opacity: 1; transform: translateX(-50%) translateY(0); }
100% { opacity: 0; transform: translateX(-50%) translateY(-20px); }
}
`;
document.head.appendChild(walkthroughStyle);
// Monitor training for educational moments
function monitorTrainingProgress() {
if (!walkthroughActive) return;
const checkProgress = () => {
if (!isTraining || !walkthroughActive) return;
// Look for breakthrough moments (rapid loss decrease)
if (lossHistory.length > 10) {
const recent = lossHistory.slice(-5);
const older = lossHistory.slice(-10, -5);
const recentAvg = recent.reduce((a, b) => a + b) / recent.length;
const olderAvg = older.reduce((a, b) => a + b) / older.length;
if (olderAvg > 0.5 && recentAvg < 0.1) {
addWalkthroughExplanation('πŸŽ‰ Breakthrough moment! The AI just discovered the pattern - watch the loss plummet!');
}
}
// Check for high accuracy achievements
if (accuracy > 0.9 && epoch > 50) {
addWalkthroughExplanation('🎯 Excellent! The AI has mastered this pattern with over 90% accuracy!');
}
setTimeout(checkProgress, 2000);
};
setTimeout(checkProgress, 5000);
}
// Navigation functions
function nextWalkthroughStep() {
walkthroughStep++;
showWalkthroughStep();
}
function prevWalkthroughStep() {
if (walkthroughStep > 0) {
walkthroughStep--;
showWalkthroughStep();
}
}
function endWalkthrough() {
walkthroughActive = false;
walkthroughTutorial = null;
walkthroughStep = 0;
walkthroughExplanationMode = false;
walkthroughTrainingSpeed = 2000; // Reset to slow but not too slow
// Hide walkthrough UI
walkthroughOverlay.style.display = 'none';
walkthroughPopup.style.display = 'none';
walkthroughHighlight.style.display = 'none';
walkthroughProgress.style.display = 'none';
walkthroughIndicator.style.display = 'none';
// Clear any intervals
if (walkthroughInterval) {
clearInterval(walkthroughInterval);
walkthroughInterval = null;
}
// Show completion message
addWalkthroughExplanation('πŸŽ“ Walkthrough complete! You now understand neural networks better. Try exploring other tasks!');
// Return to normal training speed when walkthrough ends
setTimeout(() => {
walkthroughTrainingSpeed = 100; // Back to normal speed
}, 5000);
}
// Event listeners for walkthrough
walkthroughNext.addEventListener('click', nextWalkthroughStep);
walkthroughPrev.addEventListener('click', prevWalkthroughStep);
walkthroughSkip.addEventListener('click', endWalkthrough);
// Keyboard navigation for walkthrough
document.addEventListener('keydown', (e) => {
if (!walkthroughActive) return;
if (e.key === 'ArrowRight' || e.key === ' ') {
e.preventDefault();
nextWalkthroughStep();
} else if (e.key === 'ArrowLeft') {
e.preventDefault();
prevWalkthroughStep();
} else if (e.key === 'Escape') {
e.preventDefault();
endWalkthrough();
}
});
// Enhanced training step for walkthrough mode
function walkthroughTrainStep() {
if (!walkthroughActive) {
trainStep(); // Use normal training
return;
}
// Detailed step-by-step training for education
const sample = currentTask.data[currentSample];
// 1. Forward propagation with detailed explanation
const output = network.forward(sample.input);
activations = [...network.activations];
if (walkthroughExplanationMode && epoch % 10 === 0) {
const explanation = `Step ${epoch}: Processing ${sample.label}. ` +
`Input: [${sample.input.join(', ')}] β†’ ` +
`Hidden activations β†’ ` +
`Output: ${output[0].toFixed(3)} (target: ${sample.target[0]})`;
console.log(explanation); // For developers who open console
}
// 2. Calculate loss with explanation
const result = network.trainBatch([sample]);
currentLoss = result.loss;
weightChanges = result.weightChanges;
// 3. Update tracking variables
lossHistory.push(result.loss);
if (lossHistory.length > 100) lossHistory.shift();
// 4. Calculate predictions for all samples
const newPredictions = currentTask.data.map(data => {
const output = network.forward(data.input);
const rawOutput = output[0];
let predicted, correct;
if (currentTask.isRegression) {
predicted = rawOutput.toFixed(2);
let tolerance = 0.1;
if (currentTask.title.includes('Autoencoder')) {
tolerance = 0.2;
const allOutputs = network.forward(data.input);
let totalError = 0;
for (let j = 0; j < data.target.length; j++) {
totalError += Math.abs(allOutputs[j] - data.target[j]);
}
const avgError = totalError / data.target.length;
correct = avgError < tolerance;
} else {
correct = Math.abs(rawOutput - data.target[0]) < tolerance;
}
} else {
predicted = rawOutput >= 0.5 ? 1 : 0;
const target = data.target[0];
correct = predicted === target;
}
return {
...data,
output: rawOutput,
predicted: predicted,
correct: correct
};
});
predictions = newPredictions;
// 5. Update metrics
const correct = newPredictions.filter(p => p.correct).length;
accuracy = correct / newPredictions.length;
const totalLoss = newPredictions.reduce((sum, p) =>
sum + Math.pow(p.target[0] - p.output, 2), 0) / newPredictions.length;
avgLoss = totalLoss;
currentSample = (currentSample + 1) % currentTask.data.length;
epoch++;
// 6. Update UI
updateUI();
// 7. Special walkthrough feedback
if (walkthroughActive && epoch % 20 === 0) {
const accuracyPercent = (accuracy * 100).toFixed(1);
if (accuracy > 0.8) {
addWalkthroughExplanation(`πŸŽ‰ Great progress! ${accuracyPercent}% accuracy - the AI is learning the pattern!`);
} else if (accuracy > 0.5) {
addWalkthroughExplanation(`πŸ“ˆ Learning... ${accuracyPercent}% accuracy. Watch the weights adapt!`);
}
}
}
// Override the original trainStep function when in walkthrough mode
const originalTrainStep = trainStep;
trainStep = function() {
if (walkthroughActive) {
walkthroughTrainStep();
} else {
originalTrainStep();
}
};
// Override training button behavior for walkthrough mode
const originalTrainBtnClick = trainBtn.onclick;
trainBtn.addEventListener('click', (e) => {
if (walkthroughActive) {
// Use much slower speed in walkthrough mode
isTraining = !isTraining;
if (isTraining) {
trainBtn.innerHTML = `
<svg class="icon" fill="currentColor" viewBox="0 0 24 24">
<path d="M6 19h4V5H6v14zm8-14v14h4V5h-4z"/>
</svg>
Pause Training
`;
trainBtn.className = 'btn btn-pause';
trainInterval = setInterval(trainStep, walkthroughTrainingSpeed);
} else {
trainBtn.innerHTML = `
<svg class="icon" fill="currentColor" viewBox="0 0 24 24">
<path d="M8 5v14l11-7z"/>
</svg>
Start Training
`;
trainBtn.className = 'btn btn-start';
clearInterval(trainInterval);
}
e.stopPropagation();
return false;
}
});
console.log('πŸŽ“ Walkthrough mode enhanced! Users can now learn step-by-step how neural networks work.');