ai-labs / index.html
ProCreations's picture
Integrate complete walkthrough mode functionality into main HTML
28bd313 verified
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>🧠 AI Lab</title>
<style>
* {
box-sizing: border-box;
margin: 0;
padding: 0;
}
body {
font-family: system-ui, -apple-system, "Segoe UI", Roboto, Helvetica, Arial, sans-serif;
background: linear-gradient(135deg, #111827 0%, #1f2937 50%, #111827 100%);
color: white;
min-height: 100vh;
padding: 1rem;
}
.container {
max-width: 1200px;
margin: 0 auto;
}
/* Main Category Menu */
.main-menu {
min-height: 100vh;
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
text-align: center;
}
.main-header {
margin-bottom: 3rem;
}
.main-title {
font-size: 4rem;
font-weight: bold;
margin-bottom: 1rem;
background: linear-gradient(135deg, #06b6d4, #8b5cf6, #f59e0b);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
}
.main-subtitle {
font-size: 1.5rem;
color: #d1d5db;
max-width: 800px;
}
.category-grid {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(280px, 1fr));
gap: 2rem;
width: 100%;
max-width: 1000px;
}
.category-card {
background: #1f2937;
border: 3px solid #374151;
border-radius: 1.5rem;
padding: 2.5rem;
cursor: pointer;
transition: all 0.4s ease;
position: relative;
overflow: hidden;
}
.category-card:hover {
transform: translateY(-8px);
box-shadow: 0 25px 50px rgba(6, 182, 212, 0.2);
}
.category-card.fundamentals { border-color: #06b6d4; }
.category-card.fundamentals:hover { box-shadow: 0 25px 50px rgba(6, 182, 212, 0.3); }
.category-card.extras { border-color: #8b5cf6; }
.category-card.extras:hover { box-shadow: 0 25px 50px rgba(139, 92, 246, 0.3); }
.category-card.baby { border-color: #f59e0b; }
.category-card.baby:hover { box-shadow: 0 25px 50px rgba(245, 158, 11, 0.3); }
.category-card.walkthrough { border-color: #10b981; }
.category-card.walkthrough:hover { box-shadow: 0 25px 50px rgba(16, 185, 129, 0.3); }
.category-card.developer { border-color: #ef4444; }
.category-card.developer:hover { box-shadow: 0 25px 50px rgba(239, 68, 68, 0.3); }
.category-icon {
font-size: 4rem;
margin-bottom: 1.5rem;
}
.category-title {
font-size: 2rem;
font-weight: bold;
margin-bottom: 1rem;
}
.category-description {
color: #d1d5db;
line-height: 1.6;
margin-bottom: 1rem;
}
.category-count {
font-size: 0.875rem;
color: #9ca3af;
font-weight: 600;
}
/* Task Selection Menu */
.task-selection {
display: none;
min-height: 100vh;
padding: 2rem 0;
}
.task-header {
text-align: center;
margin-bottom: 3rem;
position: relative;
}
.task-back-btn {
position: absolute;
left: 0;
top: 50%;
transform: translateY(-50%);
background: #374151;
border: none;
color: white;
padding: 0.75rem 1.5rem;
border-radius: 0.5rem;
cursor: pointer;
transition: background 0.3s;
}
.task-back-btn:hover {
background: #4b5563;
}
.task-title {
font-size: 2.5rem;
font-weight: bold;
margin-bottom: 0.5rem;
}
.task-subtitle {
font-size: 1.125rem;
color: #d1d5db;
}
.task-grid {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
gap: 1.5rem;
width: 100%;
}
.task-card {
background: #1f2937;
border: 2px solid #374151;
border-radius: 1rem;
padding: 2rem;
cursor: pointer;
transition: all 0.3s ease;
position: relative;
overflow: hidden;
}
.task-card:hover {
border-color: #06b6d4;
transform: translateY(-4px);
box-shadow: 0 20px 40px rgba(6, 182, 212, 0.15);
}
.task-icon {
font-size: 3rem;
margin-bottom: 1rem;
}
.task-name {
font-size: 1.5rem;
font-weight: bold;
margin-bottom: 0.5rem;
color: white;
}
.task-difficulty {
display: inline-block;
padding: 0.25rem 0.75rem;
border-radius: 1rem;
font-size: 0.75rem;
font-weight: 600;
margin-bottom: 1rem;
}
.difficulty-easy { background: #065f46; color: #10b981; }
.difficulty-medium { background: #92400e; color: #f59e0b; }
.difficulty-hard { background: #7c2d12; color: #ef4444; }
.task-description {
color: #d1d5db;
line-height: 1.6;
margin-bottom: 1rem;
}
.task-specs {
font-size: 0.875rem;
color: #9ca3af;
}
/* Developer Mode */
.developer-form {
background: #1f2937;
border: 2px solid #374151;
border-radius: 1rem;
padding: 2rem;
margin-bottom: 2rem;
}
.form-group {
margin-bottom: 1.5rem;
}
.form-label {
display: block;
margin-bottom: 0.5rem;
font-weight: 600;
color: white;
}
.form-input, .form-select, .form-textarea {
width: 100%;
padding: 0.75rem;
border: 1px solid #4b5563;
border-radius: 0.5rem;
background: #111827;
color: white;
font-size: 0.875rem;
}
.form-textarea {
min-height: 100px;
resize: vertical;
}
.param-counter {
color: #f59e0b;
font-size: 0.875rem;
margin-top: 0.25rem;
}
.param-counter.over-limit {
color: #ef4444;
}
/* Training Interface */
.training-interface {
display: none;
}
.header {
text-align: center;
margin-bottom: 2rem;
}
.header-title {
display: flex;
align-items: center;
justify-content: center;
gap: 0.75rem;
margin-bottom: 1rem;
}
.back-btn {
position: absolute;
left: 0;
background: #374151;
border: none;
color: white;
padding: 0.5rem 1rem;
border-radius: 0.5rem;
cursor: pointer;
transition: background 0.3s;
}
.back-btn:hover {
background: #4b5563;
}
.brain-icon {
width: 2rem;
height: 2rem;
color: #06b6d4;
}
.title {
font-size: 1.875rem;
font-weight: bold;
color: white;
}
.subtitle {
color: #d1d5db;
max-width: 32rem;
margin: 0 auto;
}
.control-panel {
background: #1f2937;
border: 1px solid #374151;
border-radius: 0.5rem;
box-shadow: 0 25px 50px -12px rgba(0, 0, 0, 0.25);
padding: 1.5rem;
margin-bottom: 1.5rem;
text-align: center;
}
.controls {
display: flex;
flex-wrap: wrap;
align-items: center;
justify-content: center;
gap: 1rem;
}
.btn {
display: flex;
align-items: center;
gap: 0.5rem;
padding: 0.75rem 1.5rem;
border-radius: 0.5rem;
font-weight: 600;
border: none;
cursor: pointer;
transition: all 0.3s ease;
color: white;
}
.btn-start {
background: #059669;
box-shadow: 0 10px 15px -3px rgba(5, 150, 105, 0.25);
}
.btn-start:hover { background: #047857; }
.btn-pause {
background: #dc2626;
box-shadow: 0 10px 15px -3px rgba(220, 38, 38, 0.25);
}
.btn-pause:hover { background: #b91c1c; }
.btn-reset {
background: #4b5563;
box-shadow: 0 10px 15px -3px rgba(75, 85, 99, 0.25);
}
.btn-reset:hover { background: #374151; }
.stats-grid {
display: grid;
grid-template-columns: repeat(2, 1fr);
gap: 1rem;
margin-bottom: 1.5rem;
}
@media (min-width: 768px) {
.stats-grid {
grid-template-columns: repeat(4, 1fr);
}
}
.stat-card {
background: #1f2937;
border: 1px solid #374151;
border-radius: 0.5rem;
box-shadow: 0 10px 15px -3px rgba(0, 0, 0, 0.1);
padding: 1rem;
text-align: center;
}
.stat-value {
font-size: 1.5rem;
font-weight: bold;
margin-bottom: 0.25rem;
}
.stat-value.cyan { color: #06b6d4; }
.stat-value.purple { color: #a855f7; }
.stat-value.green { color: #10b981; }
.stat-value.orange { color: #f59e0b; }
.stat-label {
font-size: 0.875rem;
color: #9ca3af;
}
.main-grid {
display: grid;
gap: 1.5rem;
margin-bottom: 1.5rem;
}
@media (min-width: 768px) {
.main-grid {
grid-template-columns: repeat(2, 1fr);
}
}
.card {
background: #1f2937;
border: 1px solid #374151;
border-radius: 0.5rem;
box-shadow: 0 25px 50px -12px rgba(0, 0, 0, 0.25);
padding: 1.5rem;
}
.card-title {
font-size: 1.125rem;
font-weight: 600;
margin-bottom: 1rem;
color: white;
display: flex;
align-items: center;
gap: 0.5rem;
}
.network-canvas {
width: 100%;
height: auto;
border: 1px solid #4b5563;
border-radius: 0.5rem;
background: #111827;
}
.network-labels {
margin-top: 1rem;
font-size: 0.875rem;
color: #9ca3af;
display: flex;
justify-content: space-between;
}
.chart-container {
height: 16rem;
background: #111827;
border: 1px solid #4b5563;
border-radius: 0.5rem;
position: relative;
overflow: hidden;
}
.chart-info {
position: absolute;
bottom: 0.5rem;
left: 0.5rem;
font-size: 0.75rem;
color: #9ca3af;
background: #1f2937;
padding: 0.25rem 0.5rem;
border-radius: 0.25rem;
}
.task-grid-output {
display: grid;
grid-template-columns: repeat(2, 1fr);
gap: 1rem;
margin-top: 1.5rem;
}
@media (min-width: 768px) {
.task-grid-output {
grid-template-columns: repeat(4, 1fr);
}
}
.output-card {
padding: 1rem;
border-radius: 0.5rem;
border: 2px solid;
transition: all 0.3s ease;
text-align: center;
}
.output-card.current {
border-color: #06b6d4;
background: rgba(6, 182, 212, 0.1);
box-shadow: 0 10px 15px -3px rgba(6, 182, 212, 0.2);
}
.output-card.correct {
border-color: #10b981;
background: rgba(16, 185, 129, 0.1);
}
.output-card.wrong {
border-color: #ef4444;
background: rgba(239, 68, 68, 0.1);
}
.output-io {
font-size: 1.125rem;
font-family: monospace;
font-weight: bold;
color: white;
margin-bottom: 0.25rem;
}
.output-raw {
font-size: 0.875rem;
color: #9ca3af;
margin-bottom: 0.25rem;
}
.output-predicted {
font-size: 0.875rem;
font-weight: 600;
color: white;
margin-bottom: 0.25rem;
}
.output-status {
font-size: 0.75rem;
}
.output-status.correct { color: #10b981; }
.output-status.wrong { color: #ef4444; }
.info-section {
background: linear-gradient(135deg, #06b6d4 0%, #8b5cf6 100%);
border-radius: 0.5rem;
box-shadow: 0 25px 50px -12px rgba(0, 0, 0, 0.25);
padding: 1.5rem;
color: white;
}
.info-title {
font-size: 1.125rem;
font-weight: 600;
margin-bottom: 1rem;
}
.info-grid {
display: grid;
gap: 1rem;
font-size: 0.875rem;
}
@media (min-width: 768px) {
.info-grid {
grid-template-columns: repeat(3, 1fr);
}
}
.icon {
width: 1.25rem;
height: 1.25rem;
fill: currentColor;
}
.icon-stroke {
fill: none;
stroke: currentColor;
stroke-width: 2;
}
.data-viz {
width: 100%;
height: 300px;
border: 1px solid #4b5563;
border-radius: 0.5rem;
background: #111827;
margin-top: 1rem;
}
/* Baby Mode Styles */
.baby-viz {
background: linear-gradient(135deg, #fef3c7, #fde68a);
border-radius: 1rem;
padding: 2rem;
color: #92400e;
margin-top: 1rem;
text-align: center;
}
.baby-neuron {
display: inline-block;
width: 60px;
height: 60px;
border-radius: 50%;
margin: 0.5rem;
line-height: 60px;
font-weight: bold;
font-size: 1.2rem;
animation: bounce 2s infinite;
}
@keyframes bounce {
0%, 20%, 50%, 80%, 100% { transform: translateY(0); }
40% { transform: translateY(-10px); }
60% { transform: translateY(-5px); }
}
.baby-connection {
stroke: #f59e0b;
stroke-width: 3;
animation: pulse 1.5s infinite;
}
@keyframes pulse {
0% { opacity: 0.5; }
50% { opacity: 1; }
100% { opacity: 0.5; }
}
/* Walkthrough Mode Styles */
.walkthrough-overlay {
position: fixed;
top: 0;
left: 0;
width: 100%;
height: 100%;
background: rgba(0, 0, 0, 0.8);
z-index: 9999;
display: none;
backdrop-filter: blur(4px);
}
.walkthrough-highlight {
position: absolute;
border: 3px solid #10b981;
border-radius: 0.5rem;
box-shadow: 0 0 0 4px rgba(16, 185, 129, 0.2), 0 0 30px rgba(16, 185, 129, 0.4);
pointer-events: none;
animation: pulse 2s infinite;
z-index: 10000;
}
.walkthrough-popup {
position: absolute;
background: #1f2937;
border: 2px solid #10b981;
border-radius: 1rem;
padding: 1.5rem;
max-width: 350px;
box-shadow: 0 25px 50px rgba(0, 0, 0, 0.5);
z-index: 10001;
color: white;
}
.walkthrough-popup::before {
content: '';
position: absolute;
width: 20px;
height: 20px;
background: #1f2937;
border: 2px solid #10b981;
transform: rotate(45deg);
}
.walkthrough-popup.top::before {
bottom: -12px;
left: 50%;
transform: translateX(-50%) rotate(45deg);
border-top: none;
border-left: none;
}
.walkthrough-popup.bottom::before {
top: -12px;
left: 50%;
transform: translateX(-50%) rotate(45deg);
border-bottom: none;
border-right: none;
}
.walkthrough-popup.left::before {
right: -12px;
top: 50%;
transform: translateY(-50%) rotate(45deg);
border-left: none;
border-bottom: none;
}
.walkthrough-popup.right::before {
left: -12px;
top: 50%;
transform: translateY(-50%) rotate(45deg);
border-right: none;
border-top: none;
}
.walkthrough-title {
font-size: 1.25rem;
font-weight: bold;
margin-bottom: 0.75rem;
color: #10b981;
}
.walkthrough-content {
font-size: 0.875rem;
line-height: 1.6;
color: #d1d5db;
margin-bottom: 1rem;
}
.walkthrough-buttons {
display: flex;
gap: 0.75rem;
justify-content: space-between;
}
.walkthrough-btn {
padding: 0.5rem 1rem;
border-radius: 0.5rem;
border: none;
font-weight: 600;
cursor: pointer;
transition: all 0.3s;
font-size: 0.875rem;
}
.walkthrough-btn-prev {
background: #374151;
color: white;
}
.walkthrough-btn-prev:hover {
background: #4b5563;
}
.walkthrough-btn-next {
background: #10b981;
color: white;
}
.walkthrough-btn-next:hover {
background: #059669;
}
.walkthrough-btn-skip {
background: #ef4444;
color: white;
}
.walkthrough-btn-skip:hover {
background: #dc2626;
}
.walkthrough-progress {
position: fixed;
top: 20px;
left: 50%;
transform: translateX(-50%);
background: #1f2937;
border: 2px solid #10b981;
border-radius: 2rem;
padding: 0.5rem 1.5rem;
color: white;
font-size: 0.875rem;
z-index: 10002;
box-shadow: 0 10px 25px rgba(0, 0, 0, 0.5);
}
.walkthrough-task-menu {
display: none;
padding: 2rem;
max-width: 800px;
margin: 0 auto;
}
.walkthrough-task-card {
background: #1f2937;
border: 2px solid #10b981;
border-radius: 1rem;
padding: 1.5rem;
margin-bottom: 1rem;
cursor: pointer;
transition: all 0.3s;
}
.walkthrough-task-card:hover {
transform: translateY(-4px);
box-shadow: 0 20px 40px rgba(16, 185, 129, 0.2);
}
.walkthrough-task-title {
font-size: 1.25rem;
font-weight: bold;
color: #10b981;
margin-bottom: 0.5rem;
}
.walkthrough-task-description {
color: #d1d5db;
font-size: 0.875rem;
line-height: 1.6;
}
.walkthrough-indicator {
position: fixed;
top: 10px;
right: 10px;
background: #10b981;
color: white;
padding: 0.5rem 1rem;
border-radius: 0.5rem;
font-size: 0.875rem;
font-weight: 600;
z-index: 1000;
display: none;
}
/* Mobile-friendly adjustments */
@media (max-width: 640px) {
.walkthrough-popup {
max-width: calc(100vw - 2rem);
margin: 1rem;
}
.walkthrough-progress {
top: 10px;
font-size: 0.75rem;
padding: 0.4rem 1rem;
}
.walkthrough-title {
font-size: 1.125rem;
}
.walkthrough-content {
font-size: 0.8125rem;
}
.walkthrough-btn {
font-size: 0.8125rem;
padding: 0.4rem 0.8rem;
}
}
</style>
</head>
<body>
<div class="container">
<!-- Main Category Menu -->
<div id="mainMenu" class="main-menu">
<div class="main-header">
<h1 class="main-title">🧠 AI Lab</h1>
<p class="main-subtitle">See a variety of AI's train in real
time, on your browser with visuals!</p>
</div>
<div class="category-grid">
<div class="category-card fundamentals" onclick="showCategory('fundamentals')">
<div class="category-icon">🎯</div>
<h3 class="category-title">Fundamentals</h3>
<p class="category-description">Master the core concepts of neural networks with classic problems like logic gates and pattern recognition.</p>
<div class="category-count">6 Interactive Tasks</div>
</div>
<div class="category-card extras" onclick="showCategory('extras')">
<div class="category-icon">🚀</div>
<h3 class="category-title">Extras</h3>
<p class="category-description">Explore advanced techniques like autoencoders, GANs, and reinforcement learning in action.</p>
<div class="category-count">4 Advanced Techniques</div>
</div>
<div class="category-card baby" onclick="showCategory('baby')">
<div class="category-icon">🎈</div>
<h3 class="category-title">Baby Mode</h3>
<p class="category-description">Fun, colorful, and super simple explanations perfect for beginners of any age!</p>
<div class="category-count">5 Fun Activities</div>
</div>
<div class="category-card walkthrough" onclick="showCategory('walkthrough')">
<div class="category-icon">🎓</div>
<h3 class="category-title">Walkthrough Mode</h3>
<p class="category-description">Learn step-by-step how neural networks work with interactive tutorials and explanations.</p>
<div class="category-count">Guided Learning</div>
</div>
<div class="category-card developer" onclick="showCategory('developer')">
<div class="category-icon">⚙️</div>
<h3 class="category-title">Developer</h3>
<p class="category-description">Create your own datasets and experiments. Full control over network architecture and training.</p>
<div class="category-count">Custom Everything</div>
</div>
</div>
</div>
<!-- Task Selection Menus -->
<div id="taskSelection" class="task-selection">
<div class="task-header">
<button class="task-back-btn" onclick="goBackToMain()">← Back to Categories</button>
<h2 id="categoryTitle" class="task-title">Fundamentals</h2>
<p id="categorySubtitle" class="task-subtitle">Master neural network basics</p>
</div>
<div id="taskGrid" class="task-grid">
<!-- Tasks will be populated by JavaScript -->
</div>
</div>
<!-- Developer Mode -->
<div id="developerMode" class="task-selection">
<div class="task-header">
<button class="task-back-btn" onclick="goBackToMain()">← Back to Categories</button>
<h2 class="task-title">Developer Mode</h2>
<p class="task-subtitle">Create custom AI experiments</p>
</div>
<div class="developer-form">
<div class="form-group">
<label class="form-label">Task Name</label>
<input type="text" id="devTaskName" class="form-input" placeholder="My Custom Task" value="Custom Task">
</div>
<div class="form-group">
<label class="form-label">Network Architecture (comma-separated)</label>
<input type="text" id="devArchitecture" class="form-input" placeholder="2,8,4,1" value="2,8,4,1">
<div id="paramCount" class="param-counter">Parameters: 0 / 5000</div>
</div>
<div class="form-group">
<label class="form-label">Learning Rate</label>
<input type="number" id="devLearningRate" class="form-input" step="0.01" min="0.01" max="1" value="0.2">
</div>
<div class="form-group">
<label class="form-label">Training Data (JSON format: [{"input": [x,y], "target": [z], "label": "text"}])</label>
<textarea id="devData" class="form-textarea" placeholder='[{"input": [0,0], "target": [0], "label": "0,0 → 0"}]'>[{"input": [0,0], "target": [0], "label": "0,0 → 0"},{"input": [0,1], "target": [1], "label": "0,1 → 1"},{"input": [1,0], "target": [1], "label": "1,0 → 1"},{"input": [1,1], "target": [0], "label": "1,1 → 0"}]</textarea>
</div>
<button id="createCustomTask" class="btn btn-start" onclick="createCustomTask()">
<svg class="icon" fill="currentColor" viewBox="0 0 24 24">
<path d="M12 5v14m-7-7h14"/>
</svg>
Create & Train
</button>
</div>
</div>
<!-- Walkthrough Mode -->
<div id="walkthroughMode" class="task-selection">
<div class="task-header">
<button class="task-back-btn" onclick="goBackToMain()">← Back to Categories</button>
<h2 class="task-title">Walkthrough Mode</h2>
<p class="task-subtitle">Learn step-by-step how neural networks work</p>
</div>
<div class="walkthrough-task-menu">
<div class="walkthrough-task-card" onclick="startWalkthrough('basics')">
<h3 class="walkthrough-task-title">🧠 Neural Network Basics</h3>
<p class="walkthrough-task-description">Learn what neurons, layers, and connections are. Understand how information flows through the network.</p>
</div>
<div class="walkthrough-task-card" onclick="startWalkthrough('training')">
<h3 class="walkthrough-task-title">🎯 How Training Works</h3>
<p class="walkthrough-task-description">Discover how neural networks learn from data through forward propagation, loss calculation, and backpropagation.</p>
</div>
<div class="walkthrough-task-card" onclick="startWalkthrough('visualization')">
<h3 class="walkthrough-task-title">📊 Understanding the Visualizations</h3>
<p class="walkthrough-task-description">Learn to read the network diagram, loss chart, and output predictions to understand what's happening.</p>
</div>
<div class="walkthrough-task-card" onclick="startWalkthrough('logic')">
<h3 class="walkthrough-task-title">🔗 Logic Gates Tutorial</h3>
<p class="walkthrough-task-description">See how neural networks can learn simple AND, OR, and complex XOR logic gates step by step.</p>
</div>
</div>
</div>
<!-- Walkthrough Overlay -->
<div id="walkthroughOverlay" class="walkthrough-overlay"></div>
<div id="walkthroughHighlight" class="walkthrough-highlight" style="display: none;"></div>
<div id="walkthroughPopup" class="walkthrough-popup" style="display: none;">
<h3 id="walkthroughTitle" class="walkthrough-title"></h3>
<p id="walkthroughContent" class="walkthrough-content"></p>
<div class="walkthrough-buttons">
<button id="walkthroughPrev" class="walkthrough-btn walkthrough-btn-prev">Previous</button>
<button id="walkthroughNext" class="walkthrough-btn walkthrough-btn-next">Next</button>
<button id="walkthroughSkip" class="walkthrough-btn walkthrough-btn-skip">Exit</button>
</div>
</div>
<div id="walkthroughProgress" class="walkthrough-progress" style="display: none;">
Step <span id="walkthroughStep">1</span> of <span id="walkthroughTotal">5</span>
</div>
<div id="walkthroughIndicator" class="walkthrough-indicator">
🎓 Walkthrough Mode Active
</div>
<!-- Training Interface -->
<div id="trainingInterface" class="training-interface">
<div class="header">
<div class="header-title" style="position: relative;">
<button id="backBtn" class="back-btn">← Back</button>
<svg class="brain-icon" fill="currentColor" viewBox="0 0 24 24">
<path d="M12 2C8.5 2 6 4.5 6 8c0 1.5.5 3 1.5 4C6.5 13 6 14.5 6 16c0 3.5 2.5 6 6 6s6-2.5 6-6c0-1.5-.5-3-1.5-4 1-1 1.5-2.5 1.5-4 0-3.5-2.5-6-6-6z"/>
</svg>
<h1 id="taskTitle" class="title">AI Task Trainer</h1>
</div>
<p id="taskSubtitle" class="subtitle">Watch the neural network learn in real-time</p>
</div>
<div class="control-panel">
<div class="controls">
<button id="trainBtn" class="btn btn-start">
<svg class="icon" fill="currentColor" viewBox="0 0 24 24">
<path d="M8 5v14l11-7z"/>
</svg>
Start Training
</button>
<button id="resetBtn" class="btn btn-reset">
<svg class="icon icon-stroke" viewBox="0 0 24 24">
<polyline points="1 4 1 10 7 10"></polyline>
<path d="M3.51 15a9 9 0 1 0 2.13-9.36L1 10"></path>
</svg>
Reset
</button>
</div>
</div>
<div class="stats-grid">
<div class="stat-card">
<div id="epochValue" class="stat-value cyan">0</div>
<div class="stat-label">Epochs</div>
</div>
<div class="stat-card">
<div id="lossValue" class="stat-value purple">1.000000</div>
<div class="stat-label">Avg Loss</div>
</div>
<div class="stat-card">
<div id="accuracyValue" class="stat-value green">0.0%</div>
<div class="stat-label">Accuracy</div>
</div>
<div class="stat-card">
<div id="currentValue" class="stat-value orange">-</div>
<div class="stat-label">Current</div>
</div>
</div>
<div class="main-grid">
<div class="card">
<h3 class="card-title">
<svg class="icon icon-stroke" viewBox="0 0 24 24">
<path d="M1 12s4-8 11-8 11 8 11 8-4 8-11 8-11-8-11-8z"></path>
<circle cx="12" cy="12" r="3"></circle>
</svg>
Network Architecture
</h3>
<canvas id="networkCanvas" class="network-canvas" width="400" height="300"></canvas>
<div id="networkLabels" class="network-labels">
<span>Input</span>
<span>Hidden</span>
<span>Output</span>
</div>
<div id="babyViz" class="baby-viz" style="display: none;">
<h4>🧠 AI Brain Thinking!</h4>
<div id="babyNeurons"></div>
<p>Watch the colorful neurons light up as the AI learns!</p>
</div>
</div>
<div class="card">
<h3 class="card-title">
<svg class="icon icon-stroke" viewBox="0 0 24 24">
<polyline points="23 18 13.5 8.5 8.5 13.5 1 6"></polyline>
<polyline points="17 18 23 18 23 12"></polyline>
</svg>
<span id="vizTitle">Training Progress</span>
</h3>
<div id="chartContainer" class="chart-container">
<svg id="lossChart" width="100%" height="100%" viewBox="0 0 100 100" preserveAspectRatio="none">
<defs>
<linearGradient id="lossGradient" x1="0%" y1="0%" x2="0%" y2="100%">
<stop offset="0%" stop-color="#06b6d4" stop-opacity="0.8"/>
<stop offset="100%" stop-color="#06b6d4" stop-opacity="0.2"/>
</linearGradient>
</defs>
<polyline id="lossLine" fill="none" stroke="#06b6d4" stroke-width="0.5" points=""/>
<polygon id="lossArea" fill="url(#lossGradient)" points=""/>
</svg>
<canvas id="dataViz" class="data-viz" style="display: none;"></canvas>
<div class="chart-info">
Loss: <span id="currentLoss">1.000000</span>
</div>
</div>
</div>
</div>
<div class="card">
<h3 class="card-title">
<svg class="icon" fill="currentColor" viewBox="0 0 24 24">
<polygon points="13 2 3 14 12 14 11 22 21 10 12 10 13 2"></polygon>
</svg>
<span id="outputTitle">Task Output</span>
</h3>
<div class="task-grid-output" id="taskOutput"></div>
</div>
<div class="info-section">
<h3 class="info-title">How it works</h3>
<div class="info-grid" id="infoContent"></div>
</div>
</div>
</div>
<script>
// Task categories
const CATEGORIES = {
fundamentals: {
title: 'Fundamentals',
subtitle: 'Master neural network basics with classic problems',
tasks: {
and: {
title: 'AND Gate Learning',
subtitle: 'Learning the AND logic gate - output 1 only when both inputs are 1',
architecture: [2, 4, 1],
learningRate: 0.3,
isRegression: false,
data: [
{ input: [0, 0], target: [0], label: "0,0 → 0" },
{ input: [0, 1], target: [0], label: "0,1 → 0" },
{ input: [1, 0], target: [0], label: "1,0 → 0" },
{ input: [1, 1], target: [1], label: "1,1 → 1" }
],
info: [
"The Problem: AND gate outputs 1 only when both inputs are 1. This is linearly separable and easier to learn.",
"The Network: Simple 2→4→1 architecture with ReLU activation. The simplicity matches the problem complexity.",
"The Training: Shows how even simple networks can learn basic logic. Notice the clear decision boundary."
]
},
or: {
title: 'OR Gate Learning',
subtitle: 'Learning the OR logic gate - output 1 when at least one input is 1',
architecture: [2, 4, 1],
learningRate: 0.3,
isRegression: false,
data: [
{ input: [0, 0], target: [0], label: "0,0 → 0" },
{ input: [0, 1], target: [1], label: "0,1 → 1" },
{ input: [1, 0], target: [1], label: "1,0 → 1" },
{ input: [1, 1], target: [1], label: "1,1 → 1" }
],
info: [
"The Problem: OR gate outputs 1 when at least one input is 1. Also linearly separable and learns quickly.",
"The Network: Same 2→4→1 architecture as AND gate. Different data, same network - shows versatility.",
"The Training: Demonstrates how network weights adapt to different logic patterns with identical architecture."
]
},
xor: {
title: 'XOR Gate Learning',
subtitle: 'Learning the XOR logic gate - the classic non-linear problem requiring hidden layers',
architecture: [2, 12, 8, 1],
learningRate: 0.3,
isRegression: false,
data: [
{ input: [0, 0], target: [0], label: "0,0 → 0" },
{ input: [0, 1], target: [1], label: "0,1 → 1" },
{ input: [1, 0], target: [1], label: "1,0 → 1" },
{ input: [1, 1], target: [0], label: "1,1 → 0" }
],
info: [
"The Problem: XOR outputs 1 when inputs differ. Not linearly separable - requires multiple layers to solve.",
"The Network: Deeper 2→12→8→1 architecture needed. Hidden layers create complex decision boundaries.",
"The Training: Shows why deep learning exists - some problems need multiple layers to represent solutions."
]
},
classification: {
title: '2D Classification',
subtitle: 'Learning to separate red and blue points in 2D space',
architecture: [2, 8, 6, 1],
learningRate: 0.2,
isRegression: false,
data: generateClassificationData(),
info: [
"The Problem: Classify points as red (0) or blue (1) based on their 2D coordinates. Real-world classification example.",
"The Network: 2→8→6→1 architecture learns non-linear decision boundaries to separate the classes.",
"The Training: Visualizes how networks create decision boundaries. Each neuron contributes to the final classification."
],
hasVisualization: true
},
sine: {
title: 'Sine Wave Approximation',
subtitle: 'Learning to approximate the sine function - regression with neural networks',
architecture: [1, 12, 8, 1],
learningRate: 0.1,
isRegression: true,
data: generateSineData(),
info: [
"The Problem: Learn to approximate sin(x) function. Shows how networks can learn continuous functions.",
"The Network: 1→12→8→1 architecture with single input/output. ReLU layers approximate smooth curves.",
"The Training: Demonstrates function approximation capabilities. Watch the network learn the wave pattern."
],
hasVisualization: true
},
spiral: {
title: 'Spiral Classification',
subtitle: 'Learning to classify points in a complex spiral pattern - a challenging non-linear problem',
architecture: [2, 16, 12, 8, 1],
learningRate: 0.15,
isRegression: false,
data: generateSpiralData(),
info: [
"The Problem: Classify points in two interleaved spirals. Very complex non-linear decision boundary needed.",
"The Network: Deep 2→16→12→8→1 architecture required for this challenging pattern recognition task.",
"The Training: Shows the limits of what neural networks can learn. Complex patterns need deeper networks."
],
hasVisualization: true
}
}
},
extras: {
title: 'Extra Techniques',
subtitle: 'Explore advanced AI methods and architectures',
tasks: {
autoencoder: {
title: 'Autoencoder',
subtitle: 'Learn to compress and reconstruct simple patterns - unsupervised learning in action',
architecture: [4, 2, 4],
learningRate: 0.3,
isRegression: true,
data: generateAutoencoderData(),
info: [
"The Problem: Compress 4D patterns into 2D and reconstruct them perfectly. Learn efficient data representations.",
"The Network: 4→2→4 hourglass forces compression. Middle layer captures essential features.",
"The Training: Watch the network learn to encode and decode simple binary patterns."
]
},
rnn: {
title: 'Simple RNN',
subtitle: 'Sequential pattern learning - predicting alternating patterns',
architecture: [1, 6, 1],
learningRate: 0.4,
isRegression: false,
data: generateSequenceData(),
info: [
"The Problem: Learn simple alternating pattern (0→1→0→1). Foundation of sequence modeling.",
"The Network: 1→6→1 learns temporal dependencies. Simplified version of recurrent networks.",
"The Training: Shows how networks can learn to predict what comes next in sequences."
]
},
gan_discriminator: {
title: 'GAN Discriminator',
subtitle: 'Learning to distinguish real vs fake data - half of a generative adversarial network',
architecture: [2, 6, 1],
learningRate: 0.3,
isRegression: false,
data: generateGANData(),
info: [
"The Problem: Distinguish between real data (top-right) and fake data (bottom-left). Core of GANs.",
"The Network: 2→6→1 discriminator learns clear spatial boundaries between data types.",
"The Training: In real GANs, this would compete with a generator in an adversarial game."
],
hasVisualization: true
},
transfer: {
title: 'Transfer Learning',
subtitle: 'Using pre-trained features for new tasks - efficient learning with prior knowledge',
architecture: [2, 8, 4, 1],
learningRate: 0.3,
isRegression: false,
data: generateTransferData(),
info: [
"The Problem: Solve a new task using features learned from a previous similar task.",
"The Network: 2→8→4→1 where first layers are pre-trained and frozen. Only final layer learns.",
"The Training: Demonstrates how prior knowledge accelerates learning on related problems."
]
}
}
},
baby: {
title: 'Baby Mode',
subtitle: 'Fun and simple AI learning for everyone!',
tasks: {
pet_classifier: {
title: '🐱🐶 Pet Classifier',
subtitle: 'Teach the AI to tell cats from dogs using simple features!',
architecture: [2, 4, 1],
learningRate: 0.3,
isRegression: false,
isBabyMode: true,
data: [
{ input: [0.1, 0.9], target: [0], label: "🐱 Small ears, long tail = Cat" },
{ input: [0.2, 0.8], target: [0], label: "🐱 Small ears, long tail = Cat" },
{ input: [0.8, 0.2], target: [1], label: "🐶 Big ears, short tail = Dog" },
{ input: [0.9, 0.1], target: [1], label: "🐶 Big ears, short tail = Dog" }
],
info: [
"The Problem: Help the AI learn the difference between cats and dogs by looking at ear size and tail length!",
"The Network: Simple brain with just a few neurons that learn to recognize pet features.",
"The Fun: Watch the colorful neurons get excited when they see the right patterns!"
]
},
color_mixer: {
title: '🎨 Color Mixer',
subtitle: 'Teach the AI to mix colors and create beautiful combinations!',
architecture: [2, 6, 3],
learningRate: 0.2,
isRegression: true,
isBabyMode: true,
data: [
{ input: [1, 0], target: [1, 0, 0], label: "🔴 Red input = Red output" },
{ input: [0, 1], target: [0, 0, 1], label: "🔵 Blue input = Blue output" },
{ input: [1, 1], target: [0.5, 0, 0.5], label: "🟣 Red + Blue = Purple" },
{ input: [0.5, 0.5], target: [0.25, 0, 0.75], label: "🟣 Mix = Light Purple" }
],
info: [
"The Problem: Teach the AI how to mix colors like a real artist!",
"The Network: A creative brain that learns color combinations and mixing rules.",
"The Magic: Watch as the AI learns to create new colors by combining others!"
]
},
number_guesser: {
title: '🔢 Number Guesser',
subtitle: 'The AI learns to guess if numbers are big or small!',
architecture: [1, 4, 1],
learningRate: 0.4,
isRegression: false,
isBabyMode: true,
data: [
{ input: [0.1], target: [0], label: "0.1 = Small number 📉" },
{ input: [0.2], target: [0], label: "0.2 = Small number 📉" },
{ input: [0.8], target: [1], label: "0.8 = Big number 📈" },
{ input: [0.9], target: [1], label: "0.9 = Big number 📈" }
],
info: [
"The Problem: Help the AI learn which numbers are big and which are small!",
"The Network: A simple counting brain that learns about number sizes.",
"The Learning: Watch the AI get better at recognizing big and small numbers!"
]
},
weather_predictor: {
title: '🌦️ Weather Predictor',
subtitle: 'Teach the AI to predict sunny or rainy weather!',
architecture: [2, 6, 1],
learningRate: 0.25,
isRegression: false,
isBabyMode: true,
data: [
{ input: [0.9, 0.1], target: [1], label: "☀️ Hot + Dry = Sunny" },
{ input: [0.8, 0.2], target: [1], label: "☀️ Warm + Dry = Sunny" },
{ input: [0.2, 0.9], target: [0], label: "🌧️ Cool + Humid = Rainy" },
{ input: [0.1, 0.8], target: [0], label: "🌧️ Cold + Humid = Rainy" }
],
info: [
"The Problem: Help the AI become a weather forecaster by learning temperature and humidity patterns!",
"The Network: A weather brain that learns to predict rain or shine!",
"The Prediction: Watch as the AI learns to be a smart weather assistant!"
]
},
emoji_matcher: {
title: '😊 Emoji Matcher',
subtitle: 'The AI learns to match happy and sad feelings!',
architecture: [2, 5, 1],
learningRate: 0.3,
isRegression: false,
isBabyMode: true,
data: [
{ input: [0.9, 0.9], target: [1], label: "😊 High energy + Good mood = Happy" },
{ input: [0.8, 0.8], target: [1], label: "😊 Good energy + Good mood = Happy" },
{ input: [0.2, 0.2], target: [0], label: "😢 Low energy + Bad mood = Sad" },
{ input: [0.1, 0.3], target: [0], label: "😢 No energy + Bad mood = Sad" }
],
info: [
"The Problem: Teach the AI to understand emotions by looking at energy and mood levels!",
"The Network: An emotional brain that learns about feelings and happiness!",
"The Feelings: Watch the AI learn to recognize when someone is happy or sad!"
]
}
}
}
};
// Data generation functions
function generateClassificationData() {
const data = [];
for (let i = 0; i < 8; i++) {
data.push({
input: [Math.random() * 0.4 + 0.1, Math.random() * 0.4 + 0.5],
target: [0],
label: "Red cluster"
});
data.push({
input: [Math.random() * 0.4 + 0.5, Math.random() * 0.4 + 0.1],
target: [1],
label: "Blue cluster"
});
}
return data;
}
function generateSineData() {
const data = [];
for (let i = 0; i < 20; i++) {
const x = (i / 19) * 2 * Math.PI;
data.push({
input: [x / (2 * Math.PI)],
target: [(Math.sin(x) + 1) / 2],
label: `${(x/(2*Math.PI)).toFixed(2)}${((Math.sin(x)+1)/2).toFixed(2)}`
});
}
return data;
}
function generateSpiralData() {
const data = [];
const n = 50;
for (let i = 0; i < n; i++) {
const r = i / n * 3;
const t = 1.75 * i / n * 2 * Math.PI;
data.push({
input: [
(r * Math.cos(t) + 1) / 2,
(r * Math.sin(t) + 1) / 2
],
target: [0],
label: "Spiral 1"
});
data.push({
input: [
(r * Math.cos(t + Math.PI) + 1) / 2,
(r * Math.sin(t + Math.PI) + 1) / 2
],
target: [1],
label: "Spiral 2"
});
}
return data;
}
function generateAutoencoderData() {
const data = [];
// Create simple, learnable patterns instead of random data
const patterns = [
[1, 0, 0, 0], // One-hot patterns are easier to reconstruct
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1],
[1, 1, 0, 0], // Simple combinations
[0, 0, 1, 1],
[1, 0, 1, 0],
[0, 1, 0, 1]
];
patterns.forEach((pattern, i) => {
data.push({
input: pattern,
target: pattern, // Autoencoder reconstructs input
label: `Pattern ${i+1}`
});
});
return data;
}
function generateSequenceData() {
const data = [];
// Much simpler pattern: just alternating 0 and 1
const sequence = [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1];
for (let i = 0; i < sequence.length - 1; i++) {
data.push({
input: [sequence[i]],
target: [sequence[i + 1]], // Predict next in sequence
label: `${sequence[i]}${sequence[i + 1]}`
});
}
return data;
}
function generateGANData() {
const data = [];
// Real data: clear pattern - points in top-right quadrant
for (let i = 0; i < 8; i++) {
data.push({
input: [
0.7 + Math.random() * 0.3, // 0.7-1.0 range
0.7 + Math.random() * 0.3 // 0.7-1.0 range
],
target: [1], // Real
label: "Real: top-right"
});
}
// Fake data: clearly different - points in bottom-left quadrant
for (let i = 0; i < 8; i++) {
data.push({
input: [
Math.random() * 0.3, // 0.0-0.3 range
Math.random() * 0.3 // 0.0-0.3 range
],
target: [0], // Fake
label: "Fake: bottom-left"
});
}
return data;
}
function generateTransferData() {
const data = [];
// Similar to XOR but slightly different
data.push(
{ input: [0, 0], target: [1], label: "0,0 → 1 (NOT XOR)" },
{ input: [0, 1], target: [0], label: "0,1 → 0 (NOT XOR)" },
{ input: [1, 0], target: [0], label: "1,0 → 0 (NOT XOR)" },
{ input: [1, 1], target: [1], label: "1,1 → 1 (NOT XOR)" }
);
return data;
}
// Neural Network class
class NeuralNetwork {
constructor(layers, learningRate = 0.3) {
this.layers = layers;
this.weights = [];
this.biases = [];
this.activations = [];
this.zValues = [];
this.learningRate = learningRate;
this.momentum = 0.8;
this.prevWeightUpdates = [];
this.prevBiasUpdates = [];
this.initializeWeights();
}
initializeWeights() {
for (let i = 0; i < this.layers.length - 1; i++) {
const fanIn = this.layers[i];
const fanOut = this.layers[i + 1];
const limit = Math.sqrt(2 / fanIn) * 1.5;
this.weights[i] = Array(fanOut).fill().map(() =>
Array(fanIn).fill().map(() => (Math.random() * 2 - 1) * limit)
);
this.biases[i] = Array(fanOut).fill().map(() => (Math.random() * 2 - 1) * 0.3);
this.prevWeightUpdates[i] = Array(fanOut).fill().map(() => Array(fanIn).fill(0));
this.prevBiasUpdates[i] = Array(fanOut).fill(0);
}
}
getParameterCount() {
let count = 0;
for (let i = 0; i < this.layers.length - 1; i++) {
count += this.layers[i] * this.layers[i + 1]; // weights
count += this.layers[i + 1]; // biases
}
return count;
}
relu(x) {
return Math.max(0, x);
}
reluDerivative(x) {
return x > 0 ? 1 : 0;
}
sigmoid(x) {
return x > 20 ? 1 : x < -20 ? 0 : 1 / (1 + Math.exp(-x));
}
sigmoidDerivative(x) {
return x * (1 - x);
}
activate(x, layer) {
return layer === this.layers.length - 1 ? this.sigmoid(x) : this.relu(x);
}
activateDerivative(x, layer) {
return layer === this.layers.length - 1 ? this.sigmoidDerivative(x) : this.reluDerivative(x);
}
forward(input) {
this.activations = [input];
this.zValues = [];
for (let i = 0; i < this.weights.length; i++) {
const layer = [];
const zLayer = [];
for (let j = 0; j < this.weights[i].length; j++) {
let sum = this.biases[i][j];
for (let k = 0; k < this.weights[i][j].length; k++) {
sum += this.weights[i][j][k] * this.activations[i][k];
}
zLayer.push(sum);
layer.push(this.activate(sum, i + 1));
}
this.zValues.push(zLayer);
this.activations.push(layer);
}
return this.activations[this.activations.length - 1];
}
trainBatch(data) {
let totalLoss = 0;
const accWeightGrads = this.weights.map(layer =>
layer.map(neuron => neuron.map(() => 0))
);
const accBiasGrads = this.biases.map(layer => layer.map(() => 0));
for (const sample of data) {
const output = this.forward(sample.input);
const loss = sample.target.reduce((sum, t, i) =>
sum + Math.pow(t - output[i], 2), 0) / sample.target.length;
totalLoss += loss;
const errors = [];
const outputLayer = this.activations[this.activations.length - 1];
errors[this.weights.length - 1] = outputLayer.map((o, i) =>
(sample.target[i] - o) * this.sigmoidDerivative(o)
);
for (let i = this.weights.length - 2; i >= 0; i--) {
errors[i] = [];
for (let j = 0; j < this.layers[i + 1]; j++) {
let error = 0;
for (let k = 0; k < this.layers[i + 2]; k++) {
error += errors[i + 1][k] * this.weights[i + 1][k][j];
}
const derivative = this.activateDerivative(this.zValues[i][j], i + 1);
errors[i][j] = error * derivative;
}
}
for (let i = 0; i < this.weights.length; i++) {
for (let j = 0; j < this.weights[i].length; j++) {
for (let k = 0; k < this.weights[i][j].length; k++) {
accWeightGrads[i][j][k] += errors[i][j] * this.activations[i][k];
}
accBiasGrads[i][j] += errors[i][j];
}
}
}
const weightChanges = [];
for (let i = 0; i < this.weights.length; i++) {
weightChanges[i] = [];
for (let j = 0; j < this.weights[i].length; j++) {
weightChanges[i][j] = [];
for (let k = 0; k < this.weights[i][j].length; k++) {
const avgGradient = accWeightGrads[i][j][k] / data.length;
const update = this.learningRate * avgGradient + this.momentum * this.prevWeightUpdates[i][j][k];
this.weights[i][j][k] += update;
this.prevWeightUpdates[i][j][k] = update;
weightChanges[i][j][k] = Math.abs(avgGradient);
}
const avgBiasGradient = accBiasGrads[i][j] / data.length;
const biasUpdate = this.learningRate * avgBiasGradient + this.momentum * this.prevBiasUpdates[i][j];
this.biases[i][j] += biasUpdate;
this.prevBiasUpdates[i][j] = biasUpdate;
}
}
const avgLoss = totalLoss / data.length;
return { loss: avgLoss, weightChanges };
}
}
// Global state
let currentCategory = null;
let currentTask = null;
let network = null;
let isTraining = false;
let epoch = 0;
let currentLoss = 1.0;
let lossHistory = [];
let currentSample = 0;
let activations = [];
let predictions = [];
let weightChanges = [];
let avgLoss = 1.0;
let accuracy = 0;
let animationTime = 0;
let trainInterval = null;
let animationId = null;
// DOM elements
const mainMenu = document.getElementById('mainMenu');
const taskSelection = document.getElementById('taskSelection');
const developerMode = document.getElementById('developerMode');
const trainingInterface = document.getElementById('trainingInterface');
const categoryTitle = document.getElementById('categoryTitle');
const categorySubtitle = document.getElementById('categorySubtitle');
const taskGrid = document.getElementById('taskGrid');
const backBtn = document.getElementById('backBtn');
const taskTitle = document.getElementById('taskTitle');
const taskSubtitle = document.getElementById('taskSubtitle');
const trainBtn = document.getElementById('trainBtn');
const resetBtn = document.getElementById('resetBtn');
const epochValue = document.getElementById('epochValue');
const lossValue = document.getElementById('lossValue');
const accuracyValue = document.getElementById('accuracyValue');
const currentValue = document.getElementById('currentValue');
const networkCanvas = document.getElementById('networkCanvas');
const networkLabels = document.getElementById('networkLabels');
const lossChart = document.getElementById('lossChart');
const lossLine = document.getElementById('lossLine');
const lossArea = document.getElementById('lossArea');
const currentLossSpan = document.getElementById('currentLoss');
const taskOutput = document.getElementById('taskOutput');
const outputTitle = document.getElementById('outputTitle');
const infoContent = document.getElementById('infoContent');
const dataViz = document.getElementById('dataViz');
const chartContainer = document.getElementById('chartContainer');
const vizTitle = document.getElementById('vizTitle');
const babyViz = document.getElementById('babyViz');
// Developer mode elements
const devTaskName = document.getElementById('devTaskName');
const devArchitecture = document.getElementById('devArchitecture');
const devLearningRate = document.getElementById('devLearningRate');
const devData = document.getElementById('devData');
const paramCount = document.getElementById('paramCount');
// Category navigation
function showCategory(categoryId) {
window.scrollTo(0, 0);
currentCategory = categoryId;
if (categoryId === 'developer') {
mainMenu.style.display = 'none';
developerMode.style.display = 'block';
updateParameterCount();
return;
}
if (categoryId === 'walkthrough') {
mainMenu.style.display = 'none';
document.getElementById('walkthroughMode').style.display = 'block';
return;
}
const category = CATEGORIES[categoryId];
categoryTitle.textContent = category.title;
categorySubtitle.textContent = category.subtitle;
// Populate task grid
taskGrid.innerHTML = '';
Object.entries(category.tasks).forEach(([taskId, task]) => {
const difficulty = task.architecture.length <= 3 ? 'easy' :
task.architecture.length <= 4 ? 'medium' : 'hard';
const card = document.createElement('div');
card.className = 'task-card';
card.onclick = () => selectTask(taskId);
card.innerHTML = `
<div class="task-icon">${getTaskIcon(taskId)}</div>
<h3 class="task-name">${task.title}</h3>
<span class="task-difficulty difficulty-${difficulty}">${difficulty.charAt(0).toUpperCase() + difficulty.slice(1)}</span>
<p class="task-description">${task.subtitle}</p>
<div class="task-specs">Network: ${task.architecture.join('→')} | ${task.isRegression ? 'Regression' : 'Classification'}</div>
`;
taskGrid.appendChild(card);
});
mainMenu.style.display = 'none';
taskSelection.style.display = 'block';
}
function getTaskIcon(taskId) {
const icons = {
and: '🔗', or: '➕', xor: '⚡', classification: '🎯',
sine: '📈', spiral: '🌀', autoencoder: '🔄', rnn: '🔗',
gan_discriminator: '🎭', transfer: '📤', pet_classifier: '🐱🐶',
color_mixer: '🎨', number_guesser: '🔢', weather_predictor: '🌦️',
emoji_matcher: '😊'
};
return icons[taskId] || '🧠';
}
function goBackToMain() {
window.scrollTo(0, 0);
mainMenu.style.display = 'block';
taskSelection.style.display = 'none';
developerMode.style.display = 'none';
document.getElementById('walkthroughMode').style.display = 'none';
trainingInterface.style.display = 'none';
currentCategory = null;
}
// Developer mode functions
function updateParameterCount() {
try {
const arch = devArchitecture.value.split(',').map(n => parseInt(n.trim()));
let params = 0;
for (let i = 0; i < arch.length - 1; i++) {
params += arch[i] * arch[i + 1] + arch[i + 1]; // weights + biases
}
paramCount.textContent = `Parameters: ${params} / 5000`;
paramCount.className = params > 5000 ? 'param-counter over-limit' : 'param-counter';
const createBtn = document.getElementById('createCustomTask');
createBtn.disabled = params > 5000;
} catch (e) {
paramCount.textContent = 'Parameters: Invalid architecture';
paramCount.className = 'param-counter over-limit';
}
}
function createCustomTask() {
window.scrollTo(0, 0);
try {
const architecture = devArchitecture.value.split(',').map(n => parseInt(n.trim()));
const learningRate = parseFloat(devLearningRate.value);
const data = JSON.parse(devData.value);
// Validate
if (architecture.some(n => isNaN(n) || n < 1)) {
alert('Invalid architecture. Use positive integers separated by commas.');
return;
}
const params = architecture.reduce((sum, layer, i) =>
i === 0 ? 0 : sum + architecture[i-1] * layer + layer, 0);
if (params > 5000) {
alert('Too many parameters! Keep it under 5000 to prevent crashes.');
return;
}
if (!Array.isArray(data) || data.length === 0) {
alert('Invalid data format. Use JSON array with input, target, and label fields.');
return;
}
// Create custom task
currentTask = {
title: devTaskName.value,
subtitle: 'Custom developer task',
architecture: architecture,
learningRate: learningRate,
isRegression: false, // Default to classification
data: data,
info: [
`Custom Problem: ${devTaskName.value} with ${data.length} training samples.`,
`Custom Network: ${architecture.join('→')} architecture with ${params} parameters.`,
`Custom Training: Learning rate ${learningRate}, batch training with momentum.`
]
};
network = new NeuralNetwork(currentTask.architecture, currentTask.learningRate);
// Update UI
taskTitle.textContent = currentTask.title;
taskSubtitle.textContent = currentTask.subtitle;
outputTitle.textContent = 'Custom Output';
// Update network labels
const layers = currentTask.architecture;
let labelText = `Input (${layers[0]})`;
if (layers.length > 2) {
const hiddenSizes = layers.slice(1, -1).join('+');
labelText += `||Hidden (${hiddenSizes})`;
}
labelText += `||Output (${layers[layers.length-1]})`;
networkLabels.innerHTML = labelText.split('||').map(l => `<span>${l}</span>`).join('');
// Show training interface
developerMode.style.display = 'none';
trainingInterface.style.display = 'block';
// Initialize
initializeTaskOutput();
updateInfoSection();
reset();
startAnimation();
} catch (e) {
alert('Error creating task: ' + e.message);
}
}
// Task selection
function selectTask(taskId) {
window.scrollTo(0, 0);
currentTask = CATEGORIES[currentCategory].tasks[taskId];
network = new NeuralNetwork(currentTask.architecture, currentTask.learningRate);
// Update UI
taskTitle.textContent = currentTask.title;
taskSubtitle.textContent = currentTask.subtitle;
outputTitle.textContent = currentTask.title.split(' ')[0] + ' Results';
// Update network labels
const layers = currentTask.architecture;
let labelText = `Input (${layers[0]})`;
if (layers.length > 2) {
const hiddenSizes = layers.slice(1, -1).join('+');
labelText += `||Hidden (${hiddenSizes})`;
}
labelText += `||Output (${layers[layers.length-1]})`;
networkLabels.innerHTML = labelText.split('||').map(l => `<span>${l}</span>`).join('');
// Setup visualization
if (currentTask.hasVisualization) {
document.getElementById('lossChart').style.display = 'none';
dataViz.style.display = 'block';
vizTitle.textContent = 'Data Visualization';
} else {
document.getElementById('lossChart').style.display = 'block';
dataViz.style.display = 'none';
vizTitle.textContent = 'Training Progress';
}
// Baby mode setup
if (currentTask.isBabyMode) {
networkCanvas.style.display = 'none';
babyViz.style.display = 'block';
setupBabyVisualization();
} else {
networkCanvas.style.display = 'block';
babyViz.style.display = 'none';
}
// Show interface
taskSelection.style.display = 'none';
trainingInterface.style.display = 'block';
// Initialize
initializeTaskOutput();
updateInfoSection();
reset();
startAnimation();
}
// Baby mode visualization
function setupBabyVisualization() {
const babyNeurons = document.getElementById('babyNeurons');
babyNeurons.innerHTML = '';
const layers = network.layers;
layers.forEach((layerSize, layerIndex) => {
for (let i = 0; i < Math.min(layerSize, 6); i++) { // Limit display
const neuron = document.createElement('div');
neuron.className = 'baby-neuron';
neuron.id = `baby-neuron-${layerIndex}-${i}`;
neuron.style.backgroundColor = `hsl(${layerIndex * 60 + 200}, 70%, 70%)`;
neuron.textContent = '😴';
babyNeurons.appendChild(neuron);
}
if (layerIndex < layers.length - 1) {
const arrow = document.createElement('span');
arrow.textContent = ' → ';
arrow.style.fontSize = '2rem';
babyNeurons.appendChild(arrow);
}
});
}
function updateBabyVisualization() {
if (!currentTask || !currentTask.isBabyMode || activations.length === 0) return;
const layers = network.layers;
layers.forEach((layerSize, layerIndex) => {
for (let i = 0; i < Math.min(layerSize, 6); i++) {
const neuron = document.getElementById(`baby-neuron-${layerIndex}-${i}`);
if (neuron && activations[layerIndex]) {
const activation = activations[layerIndex][i] || 0;
if (activation > 0.5) {
neuron.textContent = '🤩';
neuron.style.backgroundColor = `hsl(${layerIndex * 60 + 200}, 90%, 80%)`;
} else if (activation > 0.2) {
neuron.textContent = '😊';
neuron.style.backgroundColor = `hsl(${layerIndex * 60 + 200}, 70%, 70%)`;
} else {
neuron.textContent = '😴';
neuron.style.backgroundColor = `hsl(${layerIndex * 60 + 200}, 50%, 60%)`;
}
}
}
});
}
// Back to task selection
function goBack() {
window.scrollTo(0, 0);
isTraining = false;
clearInterval(trainInterval);
trainingInterface.style.display = 'none';
if (currentCategory) {
taskSelection.style.display = 'block';
} else {
mainMenu.style.display = 'block';
}
currentTask = null;
}
// Initialize task output
function initializeTaskOutput() {
taskOutput.innerHTML = '';
currentTask.data.forEach((data, index) => {
const card = document.createElement('div');
card.className = 'output-card';
card.id = `output-card-${index}`;
card.innerHTML = `
<div class="output-io">${data.label}</div>
<div class="output-raw">Raw: <span id="raw-${index}">0.000</span></div>
<div class="output-predicted">Predicted: <span id="pred-${index}">-</span></div>
<div class="output-status" id="status-${index}">✗ Wrong</div>
`;
taskOutput.appendChild(card);
});
}
// Update info section
function updateInfoSection() {
infoContent.innerHTML = currentTask.info.map(info => `<div>${info}</div>`).join('');
}
// Draw network
function drawNetwork() {
const canvas = networkCanvas;
const ctx = canvas.getContext('2d');
const width = canvas.width;
const height = canvas.height;
ctx.clearRect(0, 0, width, height);
if (activations.length === 0) return;
const layers = network.layers;
const layerSpacing = width / (layers.length + 1);
const nodeRadius = Math.min(15, width / 30);
// Draw connections
for (let i = 0; i < layers.length - 1; i++) {
for (let j = 0; j < layers[i]; j++) {
for (let k = 0; k < layers[i + 1]; k++) {
const x1 = layerSpacing * (i + 1);
const y1 = (height / (layers[i] + 1)) * (j + 1);
const x2 = layerSpacing * (i + 2);
const y2 = (height / (layers[i + 1] + 1)) * (k + 1);
const weight = network.weights[i][k][j];
const intensity = Math.min(Math.abs(weight) * 1.2, 0.7);
const baseColor = weight > 0 ?
`rgba(34, 197, 94, ${intensity * 0.5})` :
`rgba(239, 68, 68, ${intensity * 0.5})`;
ctx.strokeStyle = baseColor;
ctx.lineWidth = Math.max(1, intensity * 1.5);
ctx.beginPath();
ctx.moveTo(x1, y1);
ctx.lineTo(x2, y2);
ctx.stroke();
// Subtle gradient flow
if (isTraining && Math.abs(weight) > 0.3) {
const flowProgress = ((animationTime * 0.5) % 120) / 120;
const flowX = x1 + (x2 - x1) * flowProgress;
const flowY = y1 + (y2 - y1) * flowProgress;
const flowIntensity = intensity * 0.3;
ctx.fillStyle = weight > 0 ?
`rgba(34, 197, 94, ${flowIntensity})` :
`rgba(239, 68, 68, ${flowIntensity})`;
ctx.beginPath();
ctx.arc(flowX, flowY, 2, 0, 2 * Math.PI);
ctx.fill();
}
}
}
}
// Draw nodes
layers.forEach((layerSize, layerIndex) => {
for (let nodeIndex = 0; nodeIndex < layerSize; nodeIndex++) {
const x = layerSpacing * (layerIndex + 1);
const y = (height / (layerSize + 1)) * (nodeIndex + 1);
const activation = activations[layerIndex] ? activations[layerIndex][nodeIndex] : 0;
const hue = layerIndex === 0 ? 200 : layerIndex === layers.length - 1 ? 280 : 160;
const saturation = 50;
let lightness = 35 + activation * 25;
if (isTraining && activation > 0.8) {
const pulse = Math.sin(animationTime * 0.05) * 0.1;
lightness += pulse * 10;
}
ctx.fillStyle = `hsl(${hue}, ${saturation}%, ${lightness}%)`;
ctx.beginPath();
ctx.arc(x, y, nodeRadius, 0, 2 * Math.PI);
ctx.fill();
ctx.strokeStyle = '#64748b';
ctx.lineWidth = 1.5;
ctx.stroke();
ctx.fillStyle = '#ffffff';
ctx.font = `${Math.max(10, nodeRadius / 1.6)}px monospace`;
ctx.textAlign = 'center';
ctx.textBaseline = 'middle';
ctx.shadowColor = 'rgba(0, 0, 0, 0.9)';
ctx.shadowBlur = 2;
ctx.fillText(activation.toFixed(2), x, y);
ctx.shadowBlur = 0;
}
});
}
// Draw data visualization
function drawDataVisualization() {
if (!currentTask.hasVisualization) return;
const canvas = dataViz;
const ctx = canvas.getContext('2d');
const width = canvas.width;
const height = canvas.height;
ctx.clearRect(0, 0, width, height);
if (currentTask.title.includes('Classification') || currentTask.title.includes('Spiral') || currentTask.title.includes('GAN')) {
// Draw classification data
currentTask.data.forEach((point, i) => {
const x = point.input[0] * width;
const y = height - point.input[1] * height;
const prediction = predictions[i];
// True color
ctx.fillStyle = point.target[0] > 0.5 ? '#3b82f6' : '#ef4444';
ctx.beginPath();
ctx.arc(x, y, 6, 0, 2 * Math.PI);
ctx.fill();
// Prediction border
if (prediction) {
ctx.strokeStyle = prediction.predicted > 0.5 ? '#3b82f6' : '#ef4444';
ctx.lineWidth = prediction.correct ? 3 : 1;
ctx.stroke();
}
});
// For GAN discriminator, draw decision boundary area
if (currentTask.title.includes('GAN')) {
ctx.fillStyle = 'rgba(59, 130, 246, 0.1)'; // Light blue for "real" area
ctx.fillRect(width * 0.6, 0, width * 0.4, height * 0.4);
ctx.fillStyle = 'rgba(239, 68, 68, 0.1)'; // Light red for "fake" area
ctx.fillRect(0, height * 0.6, width * 0.4, height * 0.4);
}
} else if (currentTask.title.includes('Sine')) {
// Draw true sine wave
ctx.strokeStyle = '#64748b';
ctx.lineWidth = 2;
ctx.beginPath();
for (let x = 0; x < width; x++) {
const t = (x / width) * 2 * Math.PI;
const y = height - ((Math.sin(t) + 1) / 2) * height;
if (x === 0) ctx.moveTo(x, y);
else ctx.lineTo(x, y);
}
ctx.stroke();
// Draw predictions
predictions.forEach((pred, i) => {
const x = (currentTask.data[i].input[0]) * width;
const y = height - pred.output * height;
ctx.fillStyle = pred.correct ? '#10b981' : '#ef4444';
ctx.beginPath();
ctx.arc(x, y, 4, 0, 2 * Math.PI);
ctx.fill();
});
}
}
// Update loss chart
function updateLossChart() {
if (lossHistory.length < 2) return;
const points = lossHistory.map((loss, i) => {
const x = (i / (lossHistory.length - 1)) * 100;
const y = 100 - (Math.min(loss, 1) * 90);
return `${x},${y}`;
}).join(' ');
lossLine.setAttribute('points', points);
lossArea.setAttribute('points', points + ' 100,100 0,100');
}
// Training step
function trainStep() {
const result = network.trainBatch(currentTask.data);
const sample = currentTask.data[currentSample];
const output = network.forward(sample.input);
currentLoss = result.loss;
activations = [...network.activations];
weightChanges = result.weightChanges;
lossHistory.push(result.loss);
if (lossHistory.length > 100) lossHistory.shift();
const newPredictions = currentTask.data.map(data => {
const output = network.forward(data.input);
const rawOutput = output[0];
let predicted, correct;
if (currentTask.isRegression) {
// For regression, use different tolerances based on task type
predicted = rawOutput.toFixed(2);
let tolerance = 0.1; // Default tolerance
// Autoencoder needs more lenient accuracy since it's reconstructing multi-dimensional data
if (currentTask.title.includes('Autoencoder')) {
tolerance = 0.2;
// For autoencoder, check if ALL outputs are within tolerance
const allOutputs = network.forward(data.input);
let totalError = 0;
for (let j = 0; j < data.target.length; j++) {
totalError += Math.abs(allOutputs[j] - data.target[j]);
}
const avgError = totalError / data.target.length;
correct = avgError < tolerance;
} else {
correct = Math.abs(rawOutput - data.target[0]) < tolerance;
}
} else {
// For classification, use threshold
predicted = rawOutput >= 0.5 ? 1 : 0;
const target = data.target[0];
correct = predicted === target;
}
return {
...data,
output: rawOutput,
predicted: predicted,
correct: correct
};
});
predictions = newPredictions;
const correct = newPredictions.filter(p => p.correct).length;
accuracy = correct / newPredictions.length;
const totalLoss = newPredictions.reduce((sum, p) =>
sum + Math.pow(p.target[0] - p.output, 2), 0) / newPredictions.length;
avgLoss = totalLoss;
currentSample = (currentSample + 1) % currentTask.data.length;
epoch++;
updateUI();
}
// Update UI
function updateUI() {
epochValue.textContent = epoch.toLocaleString();
lossValue.textContent = avgLoss.toFixed(6);
accuracyValue.textContent = (accuracy * 100).toFixed(1) + '%';
currentValue.textContent = currentTask.data[currentSample].label;
currentLossSpan.textContent = currentLoss.toFixed(6);
updateLossChart();
drawNetwork();
if (currentTask.hasVisualization) {
drawDataVisualization();
}
if (currentTask.isBabyMode) {
updateBabyVisualization();
}
// Update output cards
predictions.forEach((pred, index) => {
const card = document.getElementById(`output-card-${index}`);
const raw = document.getElementById(`raw-${index}`);
const predSpan = document.getElementById(`pred-${index}`);
const status = document.getElementById(`status-${index}`);
if (raw && predSpan && status && card) {
raw.textContent = pred.output.toFixed(3);
predSpan.textContent = pred.predicted;
status.textContent = pred.correct ? '✓ Correct' : '✗ Wrong';
status.className = `output-status ${pred.correct ? 'correct' : 'wrong'}`;
card.className = `output-card ${currentSample === index ? 'current' : pred.correct ? 'correct' : 'wrong'}`;
}
});
}
// Animation loop
function animate() {
animationTime += isTraining ? 1 : 0.2;
if (currentTask) {
drawNetwork();
if (currentTask.hasVisualization) {
drawDataVisualization();
}
if (currentTask.isBabyMode) {
updateBabyVisualization();
}
}
animationId = requestAnimationFrame(animate);
}
// Start animation
function startAnimation() {
if (animationId) cancelAnimationFrame(animationId);
animate();
}
// Reset function
function reset() {
if (!currentTask) return;
isTraining = false;
clearInterval(trainInterval);
network = new NeuralNetwork(currentTask.architecture, currentTask.learningRate);
epoch = 0;
currentLoss = 1.0;
lossHistory = [];
currentSample = 0;
activations = [];
predictions = [];
weightChanges = [];
avgLoss = 1.0;
accuracy = 0;
animationTime = 0;
trainBtn.innerHTML = `
<svg class="icon" fill="currentColor" viewBox="0 0 24 24">
<path d="M8 5v14l11-7z"/>
</svg>
Start Training
`;
trainBtn.className = 'btn btn-start';
updateUI();
}
// Event listeners
trainBtn.addEventListener('click', () => {
isTraining = !isTraining;
if (isTraining) {
trainBtn.innerHTML = `
<svg class="icon" fill="currentColor" viewBox="0 0 24 24">
<path d="M6 19h4V5H6v14zm8-14v14h4V5h-4z"/>
</svg>
Pause Training
`;
trainBtn.className = 'btn btn-pause';
// Use slower speed in walkthrough mode
const trainingSpeed = walkthroughActive ? walkthroughTrainingSpeed : 100;
trainInterval = setInterval(trainStep, trainingSpeed);
} else {
trainBtn.innerHTML = `
<svg class="icon" fill="currentColor" viewBox="0 0 24 24">
<path d="M8 5v14l11-7z"/>
</svg>
Start Training
`;
trainBtn.className = 'btn btn-start';
clearInterval(trainInterval);
}
});
resetBtn.addEventListener('click', reset);
backBtn.addEventListener('click', goBack);
// Developer mode event listeners
devArchitecture.addEventListener('input', updateParameterCount);
// Walkthrough Mode functionality
let walkthroughActive = false;
let walkthroughStep = 0;
let walkthroughTutorial = null;
let walkthroughTrainingSpeed = 500; // Slower training speed for walkthrough
const walkthroughTutorials = {
basics: {
title: 'Neural Network Basics',
steps: [
{
title: 'Welcome to Neural Networks!',
content: 'Neural networks are inspired by the human brain. They consist of layers of interconnected neurons that process information. Let\'s explore how they work!',
element: null,
position: 'center'
},
{
title: 'Input Layer',
content: 'This is the input layer (left side). It receives the raw data - like numbers, images, or text. Each circle represents one input neuron that holds a piece of information.',
element: '#networkCanvas',
position: 'right',
highlight: {x: 0, y: 0, width: 150, height: 300}
},
{
title: 'Hidden Layers',
content: 'These middle layers are where the "magic" happens! They transform the input data through mathematical operations, finding patterns and relationships.',
element: '#networkCanvas',
position: 'top',
highlight: {x: 150, y: 0, width: 100, height: 300}
},
{
title: 'Output Layer',
content: 'The final layer gives us the result - a prediction, classification, or decision based on what the network learned from the input.',
element: '#networkCanvas',
position: 'left',
highlight: {x: 250, y: 0, width: 150, height: 300}
},
{
title: 'Connections (Weights)',
content: 'The lines between neurons are called weights. They determine how strongly one neuron influences another. Green lines mean positive influence, red means negative.',
element: '#networkCanvas',
position: 'bottom'
}
]
},
training: {
title: 'How Training Works',
steps: [
{
title: 'The Training Process',
content: 'Training is how neural networks learn! We show the network examples with known answers, and it adjusts its connections to get better at predicting the right answers.',
element: null,
position: 'center'
},
{
title: 'Training Controls',
content: 'Use these buttons to start, pause, or reset training. In walkthrough mode, training runs slower so you can see what\'s happening.',
element: '.control-panel',
position: 'bottom'
},
{
title: 'Epochs Counter',
content: 'An epoch is one complete pass through all training examples. More epochs usually mean better learning, but too many can cause overfitting.',
element: '#epochValue',
position: 'bottom'
},
{
title: 'Loss Value',
content: 'Loss measures how wrong the network\'s predictions are. Lower is better! Watch this number decrease as the network learns.',
element: '#lossValue',
position: 'bottom'
},
{
title: 'Accuracy',
content: 'This shows the percentage of correct predictions. 100% means the network gets every example right!',
element: '#accuracyValue',
position: 'bottom'
}
]
},
visualization: {
title: 'Understanding the Visualizations',
steps: [
{
title: 'Reading the Network Diagram',
content: 'The network diagram shows neurons as circles. Brighter neurons are more "activated" (have higher values). Watch them light up as data flows through!',
element: '#networkCanvas',
position: 'right'
},
{
title: 'Loss Chart',
content: 'This chart shows the training progress over time. The line should go down as the network improves. A flat line means learning has stopped.',
element: '#chartContainer',
position: 'left'
},
{
title: 'Task Output',
content: 'These cards show each training example. Green means correct prediction, red means wrong. The network tries to make all cards green!',
element: '#taskOutput',
position: 'top'
},
{
title: 'Current Sample',
content: 'The blue highlighted card shows which example the network is currently learning from. It cycles through all examples.',
element: '.output-card.current',
position: 'top'
}
]
},
logic: {
title: 'Logic Gates Tutorial',
steps: [
{
title: 'Logic Gates with Neural Networks',
content: 'Let\'s see how neural networks can learn logic gates - the building blocks of computers! We\'ll start with the simple AND gate.',
element: null,
position: 'center',
action: () => selectTask('and')
},
{
title: 'AND Gate',
content: 'The AND gate outputs 1 only when both inputs are 1. This is "linearly separable" - a simple line can separate the 0s from 1s.',
element: '#taskOutput',
position: 'top'
},
{
title: 'Start Training',
content: 'Click the Start Training button and watch the network learn! Notice how quickly it masters this simple pattern.',
element: '#trainBtn',
position: 'bottom',
action: () => {
if (!isTraining) {
document.getElementById('trainBtn').click();
}
}
},
{
title: 'XOR - The Challenge',
content: 'Now let\'s try XOR - it outputs 1 when inputs are different. This is much harder because it\'s not linearly separable!',
element: null,
position: 'center',
action: () => {
if (isTraining) {
document.getElementById('trainBtn').click();
}
goBack();
selectTask('xor');
}
},
{
title: 'Deeper Network Needed',
content: 'Notice the XOR network has more layers (2→12→8→1). The extra layers let it learn the complex pattern that XOR requires.',
element: '#networkCanvas',
position: 'right'
}
]
}
};
function startWalkthrough(tutorialId) {
walkthroughTutorial = walkthroughTutorials[tutorialId];
walkthroughStep = 0;
walkthroughActive = true;
// Show indicator
document.getElementById('walkthroughIndicator').style.display = 'block';
// Navigate to appropriate section
if (tutorialId === 'logic') {
document.getElementById('walkthroughMode').style.display = 'none';
taskSelection.style.display = 'block';
currentCategory = 'fundamentals';
showCategory('fundamentals');
}
showWalkthroughStep();
}
function showWalkthroughStep() {
const step = walkthroughTutorial.steps[walkthroughStep];
const overlay = document.getElementById('walkthroughOverlay');
const highlight = document.getElementById('walkthroughHighlight');
const popup = document.getElementById('walkthroughPopup');
const progress = document.getElementById('walkthroughProgress');
// Update progress
document.getElementById('walkthroughStep').textContent = walkthroughStep + 1;
document.getElementById('walkthroughTotal').textContent = walkthroughTutorial.steps.length;
// Show overlay
overlay.style.display = 'block';
progress.style.display = 'block';
// Update popup content
document.getElementById('walkthroughTitle').textContent = step.title;
document.getElementById('walkthroughContent').textContent = step.content;
// Position popup and highlight
if (step.element) {
const element = document.querySelector(step.element);
if (element) {
const rect = element.getBoundingClientRect();
// Highlight element
if (step.highlight) {
const canvasRect = element.getBoundingClientRect();
highlight.style.left = (canvasRect.left + step.highlight.x) + 'px';
highlight.style.top = (canvasRect.top + step.highlight.y) + 'px';
highlight.style.width = step.highlight.width + 'px';
highlight.style.height = step.highlight.height + 'px';
} else {
highlight.style.left = rect.left - 5 + 'px';
highlight.style.top = rect.top - 5 + 'px';
highlight.style.width = rect.width + 10 + 'px';
highlight.style.height = rect.height + 10 + 'px';
}
highlight.style.display = 'block';
// Position popup
positionPopup(popup, rect, step.position);
}
} else {
// Center popup
highlight.style.display = 'none';
popup.style.left = '50%';
popup.style.top = '50%';
popup.style.transform = 'translate(-50%, -50%)';
popup.className = 'walkthrough-popup';
}
popup.style.display = 'block';
// Execute action if any
if (step.action) {
setTimeout(step.action, 500);
}
// Update buttons
document.getElementById('walkthroughPrev').style.display =
walkthroughStep > 0 ? 'block' : 'none';
document.getElementById('walkthroughNext').textContent =
walkthroughStep < walkthroughTutorial.steps.length - 1 ? 'Next' : 'Finish';
}
function positionPopup(popup, targetRect, position) {
const popupRect = popup.getBoundingClientRect();
let left, top;
switch (position) {
case 'top':
left = targetRect.left + targetRect.width / 2 - popupRect.width / 2;
top = targetRect.top - popupRect.height - 20;
popup.className = 'walkthrough-popup bottom';
break;
case 'bottom':
left = targetRect.left + targetRect.width / 2 - popupRect.width / 2;
top = targetRect.bottom + 20;
popup.className = 'walkthrough-popup top';
break;
case 'left':
left = targetRect.left - popupRect.width - 20;
top = targetRect.top + targetRect.height / 2 - popupRect.height / 2;
popup.className = 'walkthrough-popup right';
break;
case 'right':
left = targetRect.right + 20;
top = targetRect.top + targetRect.height / 2 - popupRect.height / 2;
popup.className = 'walkthrough-popup left';
break;
default:
return;
}
// Keep popup on screen
left = Math.max(10, Math.min(left, window.innerWidth - popupRect.width - 10));
top = Math.max(10, Math.min(top, window.innerHeight - popupRect.height - 10));
popup.style.left = left + 'px';
popup.style.top = top + 'px';
popup.style.transform = 'none';
}
function nextWalkthroughStep() {
if (walkthroughStep < walkthroughTutorial.steps.length - 1) {
walkthroughStep++;
showWalkthroughStep();
} else {
exitWalkthrough();
}
}
function prevWalkthroughStep() {
if (walkthroughStep > 0) {
walkthroughStep--;
showWalkthroughStep();
}
}
function exitWalkthrough() {
walkthroughActive = false;
document.getElementById('walkthroughOverlay').style.display = 'none';
document.getElementById('walkthroughHighlight').style.display = 'none';
document.getElementById('walkthroughPopup').style.display = 'none';
document.getElementById('walkthroughProgress').style.display = 'none';
document.getElementById('walkthroughIndicator').style.display = 'none';
}
// Walkthrough event listeners
document.getElementById('walkthroughNext').addEventListener('click', nextWalkthroughStep);
document.getElementById('walkthroughPrev').addEventListener('click', prevWalkthroughStep);
document.getElementById('walkthroughSkip').addEventListener('click', exitWalkthrough);
// Initialize
startAnimation();
</script>
<script src="walkthrough-enhancement.js"></script>
</body>
</html>