Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
import threading
|
5 |
+
import logging
|
6 |
+
import sqlite3
|
7 |
+
from datetime import datetime
|
8 |
+
|
9 |
+
import gradio as gr
|
10 |
+
import torch
|
11 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
12 |
+
from sentence_transformers import SentenceTransformer, util
|
13 |
+
|
14 |
+
# Logging setup
|
15 |
+
logging.basicConfig(level=logging.INFO)
|
16 |
+
logger = logging.getLogger(__name__)
|
17 |
+
|
18 |
+
# Load Oracle model (FP32, CPU-only)
|
19 |
+
logger.info("Loading Oracle model...")
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B-Instruct")
|
21 |
+
model = AutoModelForCausalLM.from_pretrained(
|
22 |
+
"meta-llama/Llama-3.1-8B-Instruct",
|
23 |
+
torch_dtype=torch.float32,
|
24 |
+
device_map="cpu"
|
25 |
+
)
|
26 |
+
model.eval()
|
27 |
+
|
28 |
+
# Load SentenceTransformer for semantic similarity
|
29 |
+
logger.info("Loading SentenceTransformer model...")
|
30 |
+
st_model = SentenceTransformer('all-MiniLM-L6-v2')
|
31 |
+
|
32 |
+
# Database setup (SQLite)
|
33 |
+
DB_PATH = "game_data.db"
|
34 |
+
conn = sqlite3.connect(DB_PATH, check_same_thread=False)
|
35 |
+
c = conn.cursor()
|
36 |
+
c.execute("""
|
37 |
+
CREATE TABLE IF NOT EXISTS rounds (
|
38 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
39 |
+
timestamp TEXT,
|
40 |
+
prompt TEXT,
|
41 |
+
full_guess TEXT,
|
42 |
+
idea_guess TEXT,
|
43 |
+
completion TEXT,
|
44 |
+
score_full INTEGER,
|
45 |
+
score_idea INTEGER,
|
46 |
+
round_points INTEGER
|
47 |
+
)
|
48 |
+
""")
|
49 |
+
conn.commit()
|
50 |
+
|
51 |
+
# Load prompts from JSON
|
52 |
+
PROMPTS_PATH = "oracle_prompts.json"
|
53 |
+
with open(PROMPTS_PATH, 'r') as f:
|
54 |
+
PROMPTS = json.load(f)
|
55 |
+
|
56 |
+
# Helper functions
|
57 |
+
def get_next_prompt(state):
|
58 |
+
if not state["prompts"]:
|
59 |
+
prompts = PROMPTS.copy()
|
60 |
+
random.shuffle(prompts)
|
61 |
+
state["prompts"] = prompts
|
62 |
+
state["used"] = []
|
63 |
+
prompt = state["prompts"].pop(0)
|
64 |
+
state["used"].append(prompt)
|
65 |
+
state["round"] += 1
|
66 |
+
return prompt
|
67 |
+
|
68 |
+
|
69 |
+
def compute_score(guess, completion):
|
70 |
+
if not guess.strip():
|
71 |
+
return 0
|
72 |
+
emb_guess = st_model.encode(guess, convert_to_tensor=True)
|
73 |
+
emb_comp = st_model.encode(completion, convert_to_tensor=True)
|
74 |
+
cos_sim = util.pytorch_cos_sim(emb_guess, emb_comp).item()
|
75 |
+
if cos_sim > 0.9:
|
76 |
+
return 5
|
77 |
+
elif cos_sim > 0.7:
|
78 |
+
return 3
|
79 |
+
elif cos_sim > 0.5:
|
80 |
+
return 1
|
81 |
+
else:
|
82 |
+
return 0
|
83 |
+
|
84 |
+
|
85 |
+
def log_round(prompt, full_guess, idea_guess, completion, score_full, score_idea, round_points):
|
86 |
+
ts = datetime.utcnow().isoformat()
|
87 |
+
c.execute(
|
88 |
+
"INSERT INTO rounds (timestamp, prompt, full_guess, idea_guess, completion, score_full, score_idea, round_points) VALUES (?, ?, ?, ?, ?, ?, ?, ?)",
|
89 |
+
(ts, prompt, full_guess, idea_guess, completion, score_full, score_idea, round_points)
|
90 |
+
)
|
91 |
+
conn.commit()
|
92 |
+
logger.info(f"Round logged at {ts}")
|
93 |
+
|
94 |
+
|
95 |
+
def play_round(full_guess, idea_guess, state):
|
96 |
+
prompt = state.get("current_prompt", "")
|
97 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
98 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True)
|
99 |
+
def generate():
|
100 |
+
model.generate(
|
101 |
+
input_ids=input_ids,
|
102 |
+
max_new_tokens=200,
|
103 |
+
do_sample=True,
|
104 |
+
temperature=0.8,
|
105 |
+
streamer=streamer
|
106 |
+
)
|
107 |
+
thread = threading.Thread(target=generate)
|
108 |
+
thread.start()
|
109 |
+
completion = ""
|
110 |
+
for token in streamer:
|
111 |
+
completion += token
|
112 |
+
yield completion, "", ""
|
113 |
+
score_full = compute_score(full_guess, completion)
|
114 |
+
score_idea = compute_score(idea_guess, completion)
|
115 |
+
round_points = score_full + score_idea
|
116 |
+
state["score"] += round_points
|
117 |
+
log_round(prompt, full_guess, idea_guess, completion, score_full, score_idea, round_points)
|
118 |
+
score_text = f"Full Guess: {score_full} pts | Idea Guess: {score_idea} pts | Round Total: {round_points} pts"
|
119 |
+
reflection = "🔮 The Oracle ponders your insights..."
|
120 |
+
if state["round"] >= 5 and state["score"] >= 15:
|
121 |
+
secret = random.choice([p for p in PROMPTS if p not in state["used"]])
|
122 |
+
reflection += f"\n\n✨ **Secret Oracle Prompt:** {secret}"
|
123 |
+
yield completion, score_text, reflection, state["score"]
|
124 |
+
|
125 |
+
|
126 |
+
def next_round_fn(state):
|
127 |
+
prompt = get_next_prompt(state)
|
128 |
+
state["current_prompt"] = prompt
|
129 |
+
return prompt, "", "", "", "", "", state["score"]
|
130 |
+
|
131 |
+
# Gradio UI
|
132 |
+
demo = gr.Blocks()
|
133 |
+
with demo:
|
134 |
+
state = gr.State({"prompts": [], "used": [], "round": 0, "score": 0, "current_prompt": ""})
|
135 |
+
gr.Markdown("⚠️ **Your input and the Oracle’s response will be stored for AI training and research. By playing, you consent to this.**")
|
136 |
+
prompt_display = gr.Markdown("", elem_id="prompt_display")
|
137 |
+
with gr.Row():
|
138 |
+
full_guess = gr.Textbox(label="🧠 Exact Full Completion Guess")
|
139 |
+
idea_guess = gr.Textbox(label="💡 General Idea Guess")
|
140 |
+
submit = gr.Button("Submit Guess")
|
141 |
+
completion_box = gr.Textbox(label="Oracle's Completion", interactive=False)
|
142 |
+
score_box = gr.Textbox(label="Score", interactive=False)
|
143 |
+
reflection_box = gr.Textbox(label="Mystical Reflection", interactive=False)
|
144 |
+
next_btn = gr.Button("Next Round")
|
145 |
+
total_score_display = gr.Textbox(label="Total Score", interactive=False)
|
146 |
+
|
147 |
+
next_btn.click(next_round_fn, inputs=state, outputs=[prompt_display, full_guess, idea_guess, completion_box, score_box, reflection_box, total_score_display])
|
148 |
+
submit.click(play_round, inputs=[full_guess, idea_guess, state], outputs=[completion_box, score_box, reflection_box, total_score_display])
|
149 |
+
|
150 |
+
if __name__ == "__main__":
|
151 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|