Procit004 commited on
Commit
fe9b25d
·
1 Parent(s): 24fbf91

first commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ 09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ venv/
09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eff07ee6a9faf1b1cbaf25837bd5990025f46ac083ea629919de57c82a86c157
3
+ size 31314554
app.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os
3
+ import torch
4
+
5
+ from model import create_effnetb2_model
6
+ from timeit import default_timer as timer
7
+ from typing import Tuple, Dict
8
+
9
+ # setup class names
10
+ class_names = ['pizza', 'steak', 'sushi']
11
+
12
+ # Model and transforms preperation
13
+ effnetb2, effnetb2_transforms = create_effnetb2_model(
14
+ num_classes = 3)
15
+
16
+ # Load save weights
17
+ effnetb2.load_state_dict(
18
+ torch.load(
19
+ f="09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth",
20
+ map_location=torch.device("cpu") # load the model to the CPU
21
+ )
22
+ )
23
+
24
+ # predict function
25
+ def predict(img) -> Tuple[Dict, float]:
26
+ # Start a timer
27
+ start_time = timer()
28
+
29
+ # Transform the input image for use with EffNetB2
30
+ img = effnetb2_transforms(img).unsqueeze(0) # unsqueeze = add batch dimension on 0th index
31
+
32
+ # Put model into eval mode, make prediction
33
+ effnetb2.eval()
34
+ with torch.inference_mode():
35
+ # Pass transformed image through the model and turn the prediction logits into probaiblities
36
+ pred_probs = torch.softmax(effnetb2(img), dim=1)
37
+
38
+ # Create a prediction label and prediction probability dictionary
39
+ pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
40
+
41
+ # Calculate pred time
42
+ end_time = timer()
43
+ pred_time = round(end_time - start_time, 4)
44
+
45
+ # Return pred dict and pred time
46
+ return pred_labels_and_probs, pred_time
47
+
48
+ # gradio app
49
+
50
+ # Create title, description and article
51
+ title = "FoodVision Mini 🍕🥩🍣"
52
+ description = "An [EfficientNetB2 feature extractor](https://pytorch.org/vision/stable/models/generated/torchvision.models.efficientnet_b2.html#torchvision.models.efficientnet_b2) computer vision model to classify images as pizza, steak or sushi."
53
+ article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/#74-building-a-gradio-interface)."
54
+
55
+ # Create example list
56
+ example_list = [["examples/" + example] for example in os.listdir("examples")]
57
+
58
+ # Create the Gradio demo
59
+ demo = gr.Interface(fn=predict, # maps inputs to outputs
60
+ inputs=gr.Image(type="pil"),
61
+ outputs=[gr.Label(num_top_classes=3, label="Predictions"),
62
+ gr.Number(label="Prediction time (s)")],
63
+ examples=example_list,
64
+ title=title,
65
+ description=description,
66
+ article=article)
67
+
68
+ # Launch the demo!
69
+ demo.launch()
examples/2582289.jpg ADDED
examples/3622237.jpg ADDED
examples/592799.jpg ADDED
model.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torchvision
3
+
4
+ from torch import nn
5
+
6
+ def create_effnetb2_model(num_classes:int=3, # default output classes = 3 (pizza, steak, sushi)
7
+ seed:int=42):
8
+ # 1, 2, 3 Create EffNetB2 pretrained weights, transforms and model
9
+ weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
10
+ transforms = weights.transforms()
11
+ model = torchvision.models.efficientnet_b2(weights=weights)
12
+
13
+ # 4. Freeze all layers in the base model
14
+ for param in model.parameters():
15
+ param.requires_grad = False
16
+
17
+ # 5. Change classifier head with random seed for reproducibility
18
+ torch.manual_seed(seed)
19
+ model.classifier = nn.Sequential(
20
+ nn.Dropout(p=0.3, inplace=True),
21
+ nn.Linear(in_features=1408, out_features=num_classes)
22
+ )
23
+
24
+ return model, transforms
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ torch==1.12.0
2
+ torchvision==0.13.0
3
+ gradio==3.1.4