Update app.py
Browse files
app.py
CHANGED
@@ -3,23 +3,68 @@ from transformers import CLIPTextModel, CLIPTokenizer
|
|
3 |
import torch
|
4 |
import gradio as gr
|
5 |
import spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
|
|
|
|
|
|
7 |
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
@spaces.GPU
|
11 |
-
def generate_image(prompt, negative_prompt, num_inference_steps=30, guidance_scale=7.0,
|
12 |
-
|
|
|
13 |
if model == "Real5.0":
|
14 |
model_id = "SG161222/Realistic_Vision_V5.0_noVAE"
|
15 |
-
|
16 |
elif model == "Real5.1":
|
17 |
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
|
18 |
-
|
19 |
else:
|
20 |
model_id = "SG161222/Realistic_Vision_V6.0_B1_noVAE"
|
21 |
|
22 |
-
|
23 |
vae = AutoencoderKL.from_pretrained(
|
24 |
model_id,
|
25 |
subfolder="vae"
|
@@ -47,13 +92,30 @@ def generate_image(prompt, negative_prompt, num_inference_steps=30, guidance_sca
|
|
47 |
vae=vae
|
48 |
).to("cuda")
|
49 |
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
if model == "Real6.0":
|
53 |
pipe.safety_checker = lambda images, **kwargs: (images, [False] * len(images))
|
54 |
|
55 |
-
|
56 |
-
|
57 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(
|
58 |
pipe.scheduler.config,
|
59 |
algorithm_type="dpmsolver++",
|
@@ -79,7 +141,6 @@ def generate_image(prompt, negative_prompt, num_inference_steps=30, guidance_sca
|
|
79 |
prompt_embeds = text_encoder(text_inputs.input_ids)[0]
|
80 |
negative_prompt_embeds = text_encoder(negative_text_inputs.input_ids)[0]
|
81 |
|
82 |
-
|
83 |
# Generate the image
|
84 |
result = pipe(
|
85 |
prompt_embeds=prompt_embeds,
|
@@ -94,6 +155,17 @@ def generate_image(prompt, negative_prompt, num_inference_steps=30, guidance_sca
|
|
94 |
|
95 |
return result.images
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
title = """<h1 align="center">ProFaker</h1>"""
|
98 |
# Create the Gradio interface
|
99 |
with gr.Blocks() as demo:
|
@@ -112,28 +184,34 @@ with gr.Blocks() as demo:
|
|
112 |
info="Enter what you don't want in Image...",
|
113 |
lines=3
|
114 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
generate_button = gr.Button("Generate Image")
|
|
|
116 |
with gr.Accordion("Advanced Options", open=False):
|
117 |
-
|
118 |
model = gr.Dropdown(
|
119 |
choices=["Real6.0","Real5.1","Real5.0"],
|
120 |
value="Real6.0",
|
121 |
label="Model",
|
122 |
)
|
123 |
|
124 |
-
num_images = gr.Slider(
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
)
|
131 |
width = gr.Slider(
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
)
|
138 |
height = gr.Slider(
|
139 |
minimum=256,
|
@@ -156,6 +234,7 @@ with gr.Blocks() as demo:
|
|
156 |
step=0.5,
|
157 |
label="Guidance Scale"
|
158 |
)
|
|
|
159 |
with gr.Column():
|
160 |
# Output component
|
161 |
gallery = gr.Gallery(
|
@@ -165,13 +244,16 @@ with gr.Blocks() as demo:
|
|
165 |
columns=2,
|
166 |
rows=2
|
167 |
)
|
168 |
-
|
169 |
|
170 |
# Connect the interface to the generation function
|
171 |
generate_button.click(
|
172 |
fn=generate_image,
|
173 |
-
inputs=[prompt, negative_prompt, steps_slider, guidance_slider,
|
|
|
174 |
outputs=gallery
|
175 |
)
|
|
|
|
|
|
|
176 |
|
177 |
-
demo.queue(max_size=10).launch(share=False)
|
|
|
3 |
import torch
|
4 |
import gradio as gr
|
5 |
import spaces
|
6 |
+
from huggingface_hub import hf_hub_download
|
7 |
+
import os
|
8 |
+
import requests
|
9 |
+
import hashlib
|
10 |
+
from pathlib import Path
|
11 |
+
import re
|
12 |
|
13 |
+
# Default LoRA for fallback
|
14 |
+
DEFAULT_LORA = "OedoSoldier/detail-tweaker-lora"
|
15 |
+
LORA_CACHE_DIR = "lora_cache"
|
16 |
|
17 |
+
def download_lora(url):
|
18 |
+
"""Download LoRA file from Civitai URL and cache it locally"""
|
19 |
+
# Create cache directory if it doesn't exist
|
20 |
+
os.makedirs(LORA_CACHE_DIR, exist_ok=True)
|
21 |
+
|
22 |
+
# Generate a filename from the URL
|
23 |
+
url_hash = hashlib.md5(url.encode()).hexdigest()
|
24 |
+
local_path = os.path.join(LORA_CACHE_DIR, f"{url_hash}.safetensors")
|
25 |
+
|
26 |
+
# If file already exists in cache, return the path
|
27 |
+
if os.path.exists(local_path):
|
28 |
+
return local_path
|
29 |
+
|
30 |
+
# Download the file
|
31 |
+
try:
|
32 |
+
response = requests.get(url, stream=True)
|
33 |
+
response.raise_for_status()
|
34 |
+
|
35 |
+
# Get the total file size
|
36 |
+
total_size = int(response.headers.get('content-length', 0))
|
37 |
+
|
38 |
+
# Download and save the file
|
39 |
+
with open(local_path, 'wb') as f:
|
40 |
+
if total_size == 0:
|
41 |
+
f.write(response.content)
|
42 |
+
else:
|
43 |
+
for chunk in response.iter_content(chunk_size=8192):
|
44 |
+
if chunk:
|
45 |
+
f.write(chunk)
|
46 |
+
|
47 |
+
return local_path
|
48 |
+
except Exception as e:
|
49 |
+
print(f"Error downloading LoRA: {str(e)}")
|
50 |
+
return None
|
51 |
+
|
52 |
+
def is_civitai_url(url):
|
53 |
+
"""Check if the URL is a valid Civitai download URL"""
|
54 |
+
return bool(re.match(r'https?://civitai\.com/api/download/models/\d+', url))
|
55 |
|
56 |
@spaces.GPU
|
57 |
+
def generate_image(prompt, negative_prompt, lora_url, num_inference_steps=30, guidance_scale=7.0,
|
58 |
+
model="Real6.0", num_images=1, width=512, height=512):
|
59 |
+
|
60 |
if model == "Real5.0":
|
61 |
model_id = "SG161222/Realistic_Vision_V5.0_noVAE"
|
|
|
62 |
elif model == "Real5.1":
|
63 |
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
|
|
|
64 |
else:
|
65 |
model_id = "SG161222/Realistic_Vision_V6.0_B1_noVAE"
|
66 |
|
67 |
+
# Initialize models
|
68 |
vae = AutoencoderKL.from_pretrained(
|
69 |
model_id,
|
70 |
subfolder="vae"
|
|
|
92 |
vae=vae
|
93 |
).to("cuda")
|
94 |
|
95 |
+
# Load LoRA weights
|
96 |
+
try:
|
97 |
+
if lora_url and lora_url.strip():
|
98 |
+
if is_civitai_url(lora_url):
|
99 |
+
# Download and load Civitai LoRA
|
100 |
+
lora_path = download_lora(lora_url)
|
101 |
+
if lora_path:
|
102 |
+
pipe.load_lora_weights(lora_path)
|
103 |
+
else:
|
104 |
+
pipe.load_lora_weights(DEFAULT_LORA)
|
105 |
+
# If it's a HuggingFace repo path
|
106 |
+
elif '/' in lora_url and not lora_url.startswith('http'):
|
107 |
+
pipe.load_lora_weights(lora_url)
|
108 |
+
else:
|
109 |
+
pipe.load_lora_weights(DEFAULT_LORA)
|
110 |
+
else:
|
111 |
+
pipe.load_lora_weights(DEFAULT_LORA)
|
112 |
+
except Exception as e:
|
113 |
+
print(f"Error loading LoRA weights: {str(e)}")
|
114 |
+
pipe.load_lora_weights(DEFAULT_LORA)
|
115 |
|
116 |
if model == "Real6.0":
|
117 |
pipe.safety_checker = lambda images, **kwargs: (images, [False] * len(images))
|
118 |
|
|
|
|
|
119 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(
|
120 |
pipe.scheduler.config,
|
121 |
algorithm_type="dpmsolver++",
|
|
|
141 |
prompt_embeds = text_encoder(text_inputs.input_ids)[0]
|
142 |
negative_prompt_embeds = text_encoder(negative_text_inputs.input_ids)[0]
|
143 |
|
|
|
144 |
# Generate the image
|
145 |
result = pipe(
|
146 |
prompt_embeds=prompt_embeds,
|
|
|
155 |
|
156 |
return result.images
|
157 |
|
158 |
+
def clean_lora_cache():
|
159 |
+
"""Clean the LoRA cache directory"""
|
160 |
+
if os.path.exists(LORA_CACHE_DIR):
|
161 |
+
for file in os.listdir(LORA_CACHE_DIR):
|
162 |
+
file_path = os.path.join(LORA_CACHE_DIR, file)
|
163 |
+
try:
|
164 |
+
if os.path.isfile(file_path):
|
165 |
+
os.unlink(file_path)
|
166 |
+
except Exception as e:
|
167 |
+
print(f"Error deleting {file_path}: {str(e)}")
|
168 |
+
|
169 |
title = """<h1 align="center">ProFaker</h1>"""
|
170 |
# Create the Gradio interface
|
171 |
with gr.Blocks() as demo:
|
|
|
184 |
info="Enter what you don't want in Image...",
|
185 |
lines=3
|
186 |
)
|
187 |
+
lora_input = gr.Textbox(
|
188 |
+
label="LoRA URL/Path",
|
189 |
+
info="Enter Civitai download URL or HuggingFace path (e.g., 'username/model-name')",
|
190 |
+
value=DEFAULT_LORA
|
191 |
+
)
|
192 |
+
clear_cache = gr.Button("Clear LoRA Cache")
|
193 |
generate_button = gr.Button("Generate Image")
|
194 |
+
|
195 |
with gr.Accordion("Advanced Options", open=False):
|
|
|
196 |
model = gr.Dropdown(
|
197 |
choices=["Real6.0","Real5.1","Real5.0"],
|
198 |
value="Real6.0",
|
199 |
label="Model",
|
200 |
)
|
201 |
|
202 |
+
num_images = gr.Slider(
|
203 |
+
minimum=1,
|
204 |
+
maximum=4,
|
205 |
+
value=1,
|
206 |
+
step=1,
|
207 |
+
label="Number of Images to Generate"
|
208 |
)
|
209 |
width = gr.Slider(
|
210 |
+
minimum=256,
|
211 |
+
maximum=1024,
|
212 |
+
value=512,
|
213 |
+
step=64,
|
214 |
+
label="Image Width"
|
215 |
)
|
216 |
height = gr.Slider(
|
217 |
minimum=256,
|
|
|
234 |
step=0.5,
|
235 |
label="Guidance Scale"
|
236 |
)
|
237 |
+
|
238 |
with gr.Column():
|
239 |
# Output component
|
240 |
gallery = gr.Gallery(
|
|
|
244 |
columns=2,
|
245 |
rows=2
|
246 |
)
|
|
|
247 |
|
248 |
# Connect the interface to the generation function
|
249 |
generate_button.click(
|
250 |
fn=generate_image,
|
251 |
+
inputs=[prompt, negative_prompt, lora_input, steps_slider, guidance_slider,
|
252 |
+
model, num_images, width, height],
|
253 |
outputs=gallery
|
254 |
)
|
255 |
+
|
256 |
+
# Connect clear cache button
|
257 |
+
clear_cache.click(fn=clean_lora_cache)
|
258 |
|
259 |
+
demo.queue(max_size=10).launch(share=False)
|