Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler, AutoencoderKL
|
2 |
from transformers import CLIPTextModel, CLIPTokenizer
|
3 |
import torch
|
4 |
import gradio as gr
|
@@ -7,8 +7,6 @@ import spaces
|
|
7 |
|
8 |
lora1 = "OedoSoldier/detail-tweaker-lora"
|
9 |
|
10 |
-
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to("cuda")
|
11 |
-
|
12 |
@spaces.GPU
|
13 |
def generate_image(prompt, negative_prompt, num_inference_steps=30, guidance_scale=7.0,model="Real6.0",num_images=1, width=512, height=512):
|
14 |
|
@@ -20,7 +18,12 @@ def generate_image(prompt, negative_prompt, num_inference_steps=30, guidance_sca
|
|
20 |
|
21 |
else:
|
22 |
model_id = "SG161222/Realistic_Vision_V6.0_B1_noVAE"
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
text_encoder = CLIPTextModel.from_pretrained(
|
26 |
model_id,
|
@@ -31,6 +34,11 @@ def generate_image(prompt, negative_prompt, num_inference_steps=30, guidance_sca
|
|
31 |
model_id,
|
32 |
subfolder="tokenizer"
|
33 |
)
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
pipe = DiffusionPipeline.from_pretrained(
|
36 |
model_id,
|
|
|
1 |
+
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler, AutoencoderKL, UNet2DConditionModel
|
2 |
from transformers import CLIPTextModel, CLIPTokenizer
|
3 |
import torch
|
4 |
import gradio as gr
|
|
|
7 |
|
8 |
lora1 = "OedoSoldier/detail-tweaker-lora"
|
9 |
|
|
|
|
|
10 |
@spaces.GPU
|
11 |
def generate_image(prompt, negative_prompt, num_inference_steps=30, guidance_scale=7.0,model="Real6.0",num_images=1, width=512, height=512):
|
12 |
|
|
|
18 |
|
19 |
else:
|
20 |
model_id = "SG161222/Realistic_Vision_V6.0_B1_noVAE"
|
21 |
+
|
22 |
+
|
23 |
+
vae = AutoencoderKL.from_pretrained(
|
24 |
+
model_id,
|
25 |
+
subfolder="vae"
|
26 |
+
).to("cuda")
|
27 |
|
28 |
text_encoder = CLIPTextModel.from_pretrained(
|
29 |
model_id,
|
|
|
34 |
model_id,
|
35 |
subfolder="tokenizer"
|
36 |
)
|
37 |
+
|
38 |
+
unet = UNet2DConditionModel.from_pretrained(
|
39 |
+
model_id,
|
40 |
+
subfolder="unet"
|
41 |
+
).to("cuda")
|
42 |
|
43 |
pipe = DiffusionPipeline.from_pretrained(
|
44 |
model_id,
|