Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler, AutoencoderKL
|
|
|
|
| 2 |
import torch
|
| 3 |
import gradio as gr
|
| 4 |
import spaces
|
|
@@ -18,9 +19,23 @@ def generate_image(prompt, negative_prompt, num_inference_steps=30, guidance_sca
|
|
| 18 |
|
| 19 |
else:
|
| 20 |
model_id = "SG161222/Realistic_Vision_V6.0_B1_noVAE"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
if model == "Real6.0":
|
| 26 |
pipe.safety_checker = lambda images, **kwargs: (images, [False] * len(images))
|
|
@@ -33,16 +48,35 @@ def generate_image(prompt, negative_prompt, num_inference_steps=30, guidance_sca
|
|
| 33 |
use_karras_sigmas=True
|
| 34 |
)
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
# Generate the image
|
| 38 |
result = pipe(
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
cross_attention_kwargs
|
| 42 |
-
num_inference_steps
|
| 43 |
-
guidance_scale
|
| 44 |
-
width
|
| 45 |
-
height
|
| 46 |
num_images_per_prompt=num_images
|
| 47 |
)
|
| 48 |
|
|
|
|
| 1 |
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler, AutoencoderKL
|
| 2 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
| 3 |
import torch
|
| 4 |
import gradio as gr
|
| 5 |
import spaces
|
|
|
|
| 19 |
|
| 20 |
else:
|
| 21 |
model_id = "SG161222/Realistic_Vision_V6.0_B1_noVAE"
|
| 22 |
+
|
| 23 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
| 24 |
+
model_id,
|
| 25 |
+
subfolder="text_encoder"
|
| 26 |
+
).to("cuda")
|
| 27 |
+
|
| 28 |
+
tokenizer = CLIPTokenizer.from_pretrained(
|
| 29 |
+
model_id,
|
| 30 |
+
subfolder="tokenizer"
|
| 31 |
+
)
|
| 32 |
|
| 33 |
+
pipe = DiffusionPipeline.from_pretrained(
|
| 34 |
+
model_id,
|
| 35 |
+
text_encoder=text_encoder,
|
| 36 |
+
tokenizer=tokenizer,
|
| 37 |
+
vae=vae
|
| 38 |
+
).to("cuda")
|
| 39 |
|
| 40 |
if model == "Real6.0":
|
| 41 |
pipe.safety_checker = lambda images, **kwargs: (images, [False] * len(images))
|
|
|
|
| 48 |
use_karras_sigmas=True
|
| 49 |
)
|
| 50 |
|
| 51 |
+
text_inputs = tokenizer(
|
| 52 |
+
prompt,
|
| 53 |
+
padding="max_length",
|
| 54 |
+
max_length=tokenizer.model_max_length,
|
| 55 |
+
truncation=True,
|
| 56 |
+
return_tensors="pt"
|
| 57 |
+
).to("cuda")
|
| 58 |
+
|
| 59 |
+
negative_text_inputs = tokenizer(
|
| 60 |
+
negative_prompt,
|
| 61 |
+
padding="max_length",
|
| 62 |
+
max_length=tokenizer.model_max_length,
|
| 63 |
+
truncation=True,
|
| 64 |
+
return_tensors="pt"
|
| 65 |
+
).to("cuda")
|
| 66 |
+
|
| 67 |
+
prompt_embeds = text_encoder(text_inputs.input_ids)[0]
|
| 68 |
+
negative_prompt_embeds = text_encoder(negative_text_inputs.input_ids)[0]
|
| 69 |
+
|
| 70 |
|
| 71 |
# Generate the image
|
| 72 |
result = pipe(
|
| 73 |
+
prompt_embeds=prompt_embeds,
|
| 74 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 75 |
+
cross_attention_kwargs={"scale": 1},
|
| 76 |
+
num_inference_steps=num_inference_steps,
|
| 77 |
+
guidance_scale=guidance_scale,
|
| 78 |
+
width=width,
|
| 79 |
+
height=height,
|
| 80 |
num_images_per_prompt=num_images
|
| 81 |
)
|
| 82 |
|