from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler import torch import gradio as gr import spaces lora_path = "OedoSoldier/detail-tweaker-lora" @spaces.GPU def generate_image(prompt, negative_prompt, num_inference_steps=30, guidance_scale=7.0,model="Real6.0"): """ Generate an image using Stable Diffusion based on the input prompt """ if model == "Real5.0": model_id = "SG161222/Realistic_Vision_V5.0_noVAE" elif model == "Real5.1": model_id = "SG161222/Realistic_Vision_V5.1_noVAE" else: model_id = "SG161222/Realistic_Vision_V6.0_B1_noVAE" pipe = DiffusionPipeline.from_pretrained(model_id).to("cuda") if model == "Real6.0": pipe.safety_checker = lambda images, **kwargs: (images, [False] * len(images)) pipe.load_lora_weights(lora_path) pipe.scheduler = DPMSolverMultistepScheduler.from_config( pipe.scheduler.config, algorithm_type="dpmsolver++", use_karras_sigmas=True ) # Generate the image image = pipe( prompt = prompt, negative_prompt = negative_prompt, cross_attention_kwargs = {"scale":1}, num_inference_steps = num_inference_steps, guidance_scale = guidance_scale, width = 960, height = 960 ).images[0] return image title = """