Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,6 @@ import torch
|
|
2 |
from PIL import Image
|
3 |
from RealESRGAN import RealESRGAN
|
4 |
import gradio as gr
|
5 |
-
from gradio_imageslider import ImageSlider
|
6 |
import spaces
|
7 |
|
8 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
@@ -13,7 +12,6 @@ model4.load_weights('weights/RealESRGAN_x4.pth', download=True)
|
|
13 |
model8 = RealESRGAN(device, scale=8)
|
14 |
model8.load_weights('weights/RealESRGAN_x8.pth', download=True)
|
15 |
|
16 |
-
|
17 |
@spaces.GPU
|
18 |
def inference(image, size):
|
19 |
global model2
|
@@ -22,8 +20,6 @@ def inference(image, size):
|
|
22 |
if image is None:
|
23 |
raise gr.Error("Image not uploaded")
|
24 |
|
25 |
-
# Store original image for comparison
|
26 |
-
original_image = image.copy()
|
27 |
|
28 |
if torch.cuda.is_available():
|
29 |
torch.cuda.empty_cache()
|
@@ -47,7 +43,7 @@ def inference(image, size):
|
|
47 |
else:
|
48 |
try:
|
49 |
width, height = image.size
|
50 |
-
if width >=
|
51 |
raise gr.Error("The image is too large.")
|
52 |
result = model8.predict(image.convert('RGB'))
|
53 |
except torch.cuda.OutOfMemoryError as e:
|
@@ -57,36 +53,21 @@ def inference(image, size):
|
|
57 |
result = model2.predict(image.convert('RGB'))
|
58 |
|
59 |
print(f"Image size ({device}): {size} ... OK")
|
60 |
-
|
61 |
-
return (original_image, result)
|
62 |
-
|
63 |
|
64 |
-
title = """<h1 align="center">ProFaker</h1>"""
|
65 |
|
66 |
-
|
67 |
-
gr.HTML(title)
|
68 |
-
|
69 |
-
with gr.Row():
|
70 |
-
with gr.Column():
|
71 |
-
input_image = gr.Image(type="pil", label="Input Image")
|
72 |
-
size_select = gr.Radio(
|
73 |
-
["2x", "4x", "8x"],
|
74 |
-
type="value",
|
75 |
-
value="2x",
|
76 |
-
label="Resolution model"
|
77 |
-
)
|
78 |
-
process_btn = gr.Button("Upscale Image")
|
79 |
-
|
80 |
-
with gr.Column():
|
81 |
-
result_slider = ImageSlider(
|
82 |
-
interactive=False,
|
83 |
-
label="Before and After Comparison"
|
84 |
-
)
|
85 |
-
|
86 |
-
process_btn.click(
|
87 |
-
fn=inference,
|
88 |
-
inputs=[input_image, size_select],
|
89 |
-
outputs=result_slider
|
90 |
-
)
|
91 |
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from PIL import Image
|
3 |
from RealESRGAN import RealESRGAN
|
4 |
import gradio as gr
|
|
|
5 |
import spaces
|
6 |
|
7 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
12 |
model8 = RealESRGAN(device, scale=8)
|
13 |
model8.load_weights('weights/RealESRGAN_x8.pth', download=True)
|
14 |
|
|
|
15 |
@spaces.GPU
|
16 |
def inference(image, size):
|
17 |
global model2
|
|
|
20 |
if image is None:
|
21 |
raise gr.Error("Image not uploaded")
|
22 |
|
|
|
|
|
23 |
|
24 |
if torch.cuda.is_available():
|
25 |
torch.cuda.empty_cache()
|
|
|
43 |
else:
|
44 |
try:
|
45 |
width, height = image.size
|
46 |
+
if width >= 6000 or height >= 6000:
|
47 |
raise gr.Error("The image is too large.")
|
48 |
result = model8.predict(image.convert('RGB'))
|
49 |
except torch.cuda.OutOfMemoryError as e:
|
|
|
53 |
result = model2.predict(image.convert('RGB'))
|
54 |
|
55 |
print(f"Image size ({device}): {size} ... OK")
|
56 |
+
return result
|
|
|
|
|
57 |
|
|
|
58 |
|
59 |
+
title = "ProFaker"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
+
gr.Interface(inference,
|
62 |
+
[gr.Image(type="pil"),
|
63 |
+
gr.Radio(["2x", "4x", "8x"],
|
64 |
+
type="value",
|
65 |
+
value="2x",
|
66 |
+
label="Resolution model")],
|
67 |
+
gr.Image(type="pil", label="Output"),
|
68 |
+
title=title,
|
69 |
+
flagging_mode="never",
|
70 |
+
cache_mode="lazy",
|
71 |
+
delete_cache=(44000, 44000),
|
72 |
+
).queue(api_open=True).launch(show_error=True, show_api=True)
|
73 |
+
|