Update data_processor.py
Browse files- data_processor.py +218 -31
data_processor.py
CHANGED
@@ -1,14 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import pandas as pd
|
2 |
import os
|
3 |
-
import re
|
4 |
from huggingface_hub import InferenceClient
|
5 |
-
# from graphviz import Digraph
|
6 |
|
7 |
class DataProcessor:
|
8 |
INTERVENTION_COLUMN = 'Did the intervention happen today?'
|
9 |
-
ENGAGED_STR = 'Engaged
|
10 |
-
PARTIALLY_ENGAGED_STR = 'Partially Engaged
|
11 |
-
NOT_ENGAGED_STR = 'Not Engaged
|
12 |
|
13 |
def __init__(self, student_metrics_df=None):
|
14 |
self.hf_api_key = os.getenv('HF_API_KEY')
|
@@ -17,6 +203,7 @@ class DataProcessor:
|
|
17 |
self.client = InferenceClient(api_key=self.hf_api_key)
|
18 |
self.student_metrics_df = student_metrics_df
|
19 |
|
|
|
20 |
def read_excel(self, uploaded_file):
|
21 |
return pd.read_excel(uploaded_file)
|
22 |
|
@@ -32,13 +219,6 @@ class DataProcessor:
|
|
32 |
df['Session Start Time'] = self.safe_convert_to_time(df['Session Start Time'], '%I:%M %p')
|
33 |
df['Session End Time'] = self.safe_convert_to_time(df['Session End Time'], '%I:%M %p')
|
34 |
return df
|
35 |
-
|
36 |
-
# def format_session_data(self, df):
|
37 |
-
# df['Date of Session'] = pd.to_datetime(df['Date of Session'], errors='coerce').dt.date
|
38 |
-
# df['Timestamp'] = self.safe_convert_to_datetime(df['Timestamp'], '%I:%M %p')
|
39 |
-
# df['Session Start Time'] = self.safe_convert_to_time(df['Session Start Time'], '%I:%M %p')
|
40 |
-
# df['Session End Time'] = self.safe_convert_to_time(df['Session End Time'], '%I:%M %p')
|
41 |
-
# return df
|
42 |
|
43 |
def safe_convert_to_time(self, series, format_str='%I:%M %p'):
|
44 |
try:
|
@@ -87,6 +267,17 @@ class DataProcessor:
|
|
87 |
'Total Number of Days Available': [total_days]
|
88 |
})
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
def compute_student_metrics(self, df):
|
91 |
intervention_df = df[df[self.INTERVENTION_COLUMN].str.strip().str.lower() == 'yes']
|
92 |
intervention_sessions_held = len(intervention_df)
|
@@ -98,7 +289,7 @@ class DataProcessor:
|
|
98 |
student_data = intervention_df[[col]].copy()
|
99 |
student_data[col] = student_data[col].fillna('Absent')
|
100 |
|
101 |
-
attendance_values = student_data[col].apply(lambda x: 1 if x in [
|
102 |
self.ENGAGED_STR,
|
103 |
self.PARTIALLY_ENGAGED_STR,
|
104 |
self.NOT_ENGAGED_STR
|
@@ -109,19 +300,16 @@ class DataProcessor:
|
|
109 |
attendance_pct = round(attendance_pct)
|
110 |
|
111 |
engagement_counts = {
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
'Absent': 0
|
116 |
}
|
117 |
|
118 |
for x in student_data[col]:
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
engagement_counts['Partially Engaged'] += 1
|
123 |
-
elif x == self.NOT_ENGAGED_STR:
|
124 |
-
engagement_counts['Not Engaged'] += 1
|
125 |
else:
|
126 |
engagement_counts['Absent'] += 1 # Count as Absent if not engaged
|
127 |
|
@@ -129,16 +317,16 @@ class DataProcessor:
|
|
129 |
total_sessions = sum(engagement_counts.values())
|
130 |
|
131 |
# Engagement (%)
|
132 |
-
engagement_pct = (engagement_counts[
|
133 |
engagement_pct = round(engagement_pct)
|
134 |
|
135 |
-
engaged_pct = (engagement_counts[
|
136 |
engaged_pct = round(engaged_pct)
|
137 |
|
138 |
-
partially_engaged_pct = (engagement_counts[
|
139 |
partially_engaged_pct = round(partially_engaged_pct)
|
140 |
|
141 |
-
not_engaged_pct = (engagement_counts[
|
142 |
not_engaged_pct = round(not_engaged_pct)
|
143 |
|
144 |
absent_pct = (engagement_counts['Absent'] / total_sessions * 100) if total_sessions > 0 else 0
|
@@ -155,11 +343,10 @@ class DataProcessor:
|
|
155 |
'Attended ≥ 90%': attended_90,
|
156 |
'Engagement ≥ 80%': engaged_80,
|
157 |
'Attendance (%)': attendance_pct,
|
158 |
-
# 'Attendance #': sessions_attended,
|
159 |
'Engagement (%)': engagement_pct,
|
160 |
-
'
|
161 |
-
'
|
162 |
-
'
|
163 |
'Absent (%)': absent_pct
|
164 |
}
|
165 |
|
@@ -167,7 +354,7 @@ class DataProcessor:
|
|
167 |
student_metrics_df = pd.DataFrame.from_dict(student_metrics, orient='index').reset_index()
|
168 |
student_metrics_df.rename(columns={'index': 'Student'}, inplace=True)
|
169 |
return student_metrics_df
|
170 |
-
|
171 |
def compute_average_metrics(self, student_metrics_df):
|
172 |
# Calculate the attendance and engagement average percentages across students
|
173 |
attendance_avg_stats = student_metrics_df['Attendance (%)'].mean() # Calculate the average attendance percentage
|
|
|
1 |
+
# import pandas as pd
|
2 |
+
# import os
|
3 |
+
# import re
|
4 |
+
# from huggingface_hub import InferenceClient
|
5 |
+
# # from graphviz import Digraph
|
6 |
+
|
7 |
+
# class DataProcessor:
|
8 |
+
# INTERVENTION_COLUMN = 'Did the intervention happen today?'
|
9 |
+
# ENGAGED_STR = 'Engaged (Respect, Responsibility, Effort)'
|
10 |
+
# PARTIALLY_ENGAGED_STR = 'Partially Engaged (about 50%)'
|
11 |
+
# NOT_ENGAGED_STR = 'Not Engaged (less than 50%)'
|
12 |
+
|
13 |
+
# def __init__(self, student_metrics_df=None):
|
14 |
+
# self.hf_api_key = os.getenv('HF_API_KEY')
|
15 |
+
# if not self.hf_api_key:
|
16 |
+
# raise ValueError("HF_API_KEY not set in environment variables")
|
17 |
+
# self.client = InferenceClient(api_key=self.hf_api_key)
|
18 |
+
# self.student_metrics_df = student_metrics_df
|
19 |
+
|
20 |
+
# def read_excel(self, uploaded_file):
|
21 |
+
# return pd.read_excel(uploaded_file)
|
22 |
+
|
23 |
+
# def format_session_data(self, df):
|
24 |
+
# # Look for "Date of Session" or "Date" column
|
25 |
+
# date_column = next((col for col in df.columns if col in ["Date of Session", "Date"]), None)
|
26 |
+
# if date_column:
|
27 |
+
# df[date_column] = pd.to_datetime(df[date_column], errors='coerce').dt.date
|
28 |
+
# else:
|
29 |
+
# print("Warning: Neither 'Date of Session' nor 'Date' column found in the dataframe.")
|
30 |
+
|
31 |
+
# df['Timestamp'] = self.safe_convert_to_datetime(df['Timestamp'], '%I:%M %p')
|
32 |
+
# df['Session Start Time'] = self.safe_convert_to_time(df['Session Start Time'], '%I:%M %p')
|
33 |
+
# df['Session End Time'] = self.safe_convert_to_time(df['Session End Time'], '%I:%M %p')
|
34 |
+
# return df
|
35 |
+
|
36 |
+
# def safe_convert_to_time(self, series, format_str='%I:%M %p'):
|
37 |
+
# try:
|
38 |
+
# converted = pd.to_datetime(series, format='%H:%M:%S', errors='coerce')
|
39 |
+
# if format_str:
|
40 |
+
# return converted.dt.strftime(format_str)
|
41 |
+
# return converted
|
42 |
+
# except Exception as e:
|
43 |
+
# print(f"Error converting series to time: {e}")
|
44 |
+
# return series
|
45 |
+
|
46 |
+
# def safe_convert_to_datetime(self, series, format_str=None):
|
47 |
+
# try:
|
48 |
+
# converted = pd.to_datetime(series, errors='coerce')
|
49 |
+
# if format_str:
|
50 |
+
# return converted.dt.strftime(format_str)
|
51 |
+
# return converted
|
52 |
+
# except Exception as e:
|
53 |
+
# print(f"Error converting series to datetime: {e}")
|
54 |
+
# return series
|
55 |
+
|
56 |
+
# def replace_student_names_with_initials(self, df):
|
57 |
+
# updated_columns = []
|
58 |
+
# for col in df.columns:
|
59 |
+
# if col.startswith('Student Attendance'):
|
60 |
+
# match = re.match(r'Student Attendance \[(.+?)\]', col)
|
61 |
+
# if match:
|
62 |
+
# name = match.group(1)
|
63 |
+
# initials = ''.join([part[0] for part in name.split()])
|
64 |
+
# updated_columns.append(f'Student Attendance [{initials}]')
|
65 |
+
# else:
|
66 |
+
# updated_columns.append(col)
|
67 |
+
# else:
|
68 |
+
# updated_columns.append(col)
|
69 |
+
# df.columns = updated_columns
|
70 |
+
# return df
|
71 |
+
|
72 |
+
# def compute_intervention_statistics(self, df):
|
73 |
+
# total_days = len(df)
|
74 |
+
# sessions_held = df[self.INTERVENTION_COLUMN].str.strip().str.lower().eq('yes').sum()
|
75 |
+
# intervention_frequency = (sessions_held / total_days) * 100 if total_days > 0 else 0
|
76 |
+
# return pd.DataFrame({
|
77 |
+
# 'Intervention Dosage (%)': [round(intervention_frequency, 0)],
|
78 |
+
# 'Intervention Sessions Held': [sessions_held],
|
79 |
+
# 'Intervention Sessions Not Held': [total_days - sessions_held],
|
80 |
+
# 'Total Number of Days Available': [total_days]
|
81 |
+
# })
|
82 |
+
|
83 |
+
# def compute_student_metrics(self, df):
|
84 |
+
# intervention_df = df[df[self.INTERVENTION_COLUMN].str.strip().str.lower() == 'yes']
|
85 |
+
# intervention_sessions_held = len(intervention_df)
|
86 |
+
# student_columns = [col for col in df.columns if col.startswith('Student Attendance')]
|
87 |
+
|
88 |
+
# student_metrics = {}
|
89 |
+
# for col in student_columns:
|
90 |
+
# student_name = col.replace('Student Attendance [', '').replace(']', '').strip()
|
91 |
+
# student_data = intervention_df[[col]].copy()
|
92 |
+
# student_data[col] = student_data[col].fillna('Absent')
|
93 |
+
|
94 |
+
# attendance_values = student_data[col].apply(lambda x: 1 if x in [
|
95 |
+
# self.ENGAGED_STR,
|
96 |
+
# self.PARTIALLY_ENGAGED_STR,
|
97 |
+
# self.NOT_ENGAGED_STR
|
98 |
+
# ] else 0)
|
99 |
+
|
100 |
+
# sessions_attended = attendance_values.sum()
|
101 |
+
# attendance_pct = (sessions_attended / intervention_sessions_held) * 100 if intervention_sessions_held > 0 else 0
|
102 |
+
# attendance_pct = round(attendance_pct)
|
103 |
+
|
104 |
+
# engagement_counts = {
|
105 |
+
# 'Engaged': 0,
|
106 |
+
# 'Partially Engaged': 0,
|
107 |
+
# 'Not Engaged': 0,
|
108 |
+
# 'Absent': 0
|
109 |
+
# }
|
110 |
+
|
111 |
+
# for x in student_data[col]:
|
112 |
+
# if x == self.ENGAGED_STR:
|
113 |
+
# engagement_counts['Engaged'] += 1
|
114 |
+
# elif x == self.PARTIALLY_ENGAGED_STR:
|
115 |
+
# engagement_counts['Partially Engaged'] += 1
|
116 |
+
# elif x == self.NOT_ENGAGED_STR:
|
117 |
+
# engagement_counts['Not Engaged'] += 1
|
118 |
+
# else:
|
119 |
+
# engagement_counts['Absent'] += 1 # Count as Absent if not engaged
|
120 |
+
|
121 |
+
# # Calculate percentages for engagement states
|
122 |
+
# total_sessions = sum(engagement_counts.values())
|
123 |
+
|
124 |
+
# # Engagement (%)
|
125 |
+
# engagement_pct = (engagement_counts['Engaged'] / total_sessions * 100) if total_sessions > 0 else 0
|
126 |
+
# engagement_pct = round(engagement_pct)
|
127 |
+
|
128 |
+
# engaged_pct = (engagement_counts['Engaged'] / total_sessions * 100) if total_sessions > 0 else 0
|
129 |
+
# engaged_pct = round(engaged_pct)
|
130 |
+
|
131 |
+
# partially_engaged_pct = (engagement_counts['Partially Engaged'] / total_sessions * 100) if total_sessions > 0 else 0
|
132 |
+
# partially_engaged_pct = round(partially_engaged_pct)
|
133 |
+
|
134 |
+
# not_engaged_pct = (engagement_counts['Not Engaged'] / total_sessions * 100) if total_sessions > 0 else 0
|
135 |
+
# not_engaged_pct = round(not_engaged_pct)
|
136 |
+
|
137 |
+
# absent_pct = (engagement_counts['Absent'] / total_sessions * 100) if total_sessions > 0 else 0
|
138 |
+
# absent_pct = round(absent_pct)
|
139 |
+
|
140 |
+
# # Determine if the student attended ≥ 90% of sessions
|
141 |
+
# attended_90 = "Yes" if attendance_pct >= 90 else "No"
|
142 |
+
|
143 |
+
# # Determine if the student was engaged ≥ 80% of the time
|
144 |
+
# engaged_80 = "Yes" if engaged_pct >= 80 else "No"
|
145 |
+
|
146 |
+
# # Store metrics in the required order
|
147 |
+
# student_metrics[student_name] = {
|
148 |
+
# 'Attended ≥ 90%': attended_90,
|
149 |
+
# 'Engagement ≥ 80%': engaged_80,
|
150 |
+
# 'Attendance (%)': attendance_pct,
|
151 |
+
# # 'Attendance #': sessions_attended,
|
152 |
+
# 'Engagement (%)': engagement_pct,
|
153 |
+
# 'Engaged (%)': engaged_pct,
|
154 |
+
# 'Partially Engaged (%)': partially_engaged_pct,
|
155 |
+
# 'Not Engaged (%)': not_engaged_pct,
|
156 |
+
# 'Absent (%)': absent_pct
|
157 |
+
# }
|
158 |
+
|
159 |
+
# # Create a DataFrame from student_metrics
|
160 |
+
# student_metrics_df = pd.DataFrame.from_dict(student_metrics, orient='index').reset_index()
|
161 |
+
# student_metrics_df.rename(columns={'index': 'Student'}, inplace=True)
|
162 |
+
# return student_metrics_df
|
163 |
+
|
164 |
+
# def compute_average_metrics(self, student_metrics_df):
|
165 |
+
# # Calculate the attendance and engagement average percentages across students
|
166 |
+
# attendance_avg_stats = student_metrics_df['Attendance (%)'].mean() # Calculate the average attendance percentage
|
167 |
+
# engagement_avg_stats = student_metrics_df['Engagement (%)'].mean() # Calculate the average engagement percentage
|
168 |
+
|
169 |
+
# # Round the averages to make them whole numbers
|
170 |
+
# attendance_avg_stats = round(attendance_avg_stats)
|
171 |
+
# engagement_avg_stats = round(engagement_avg_stats)
|
172 |
+
|
173 |
+
# return attendance_avg_stats, engagement_avg_stats
|
174 |
+
|
175 |
+
# def evaluate_student(self, row, attendance_threshold=90, engagement_threshold=80):
|
176 |
+
# if row["Attended ≥ 90%"] == "No":
|
177 |
+
# return "Address Attendance"
|
178 |
+
# elif row["Engagement ≥ 80%"] == "No":
|
179 |
+
# return "Address Engagement"
|
180 |
+
# return "Consider barriers, fidelity, and progress monitoring"
|
181 |
+
|
182 |
+
|
183 |
+
|
184 |
+
|
185 |
+
|
186 |
+
|
187 |
+
|
188 |
+
import re
|
189 |
import pandas as pd
|
190 |
import os
|
|
|
191 |
from huggingface_hub import InferenceClient
|
|
|
192 |
|
193 |
class DataProcessor:
|
194 |
INTERVENTION_COLUMN = 'Did the intervention happen today?'
|
195 |
+
ENGAGED_STR = 'Engaged'
|
196 |
+
PARTIALLY_ENGAGED_STR = 'Partially Engaged'
|
197 |
+
NOT_ENGAGED_STR = 'Not Engaged'
|
198 |
|
199 |
def __init__(self, student_metrics_df=None):
|
200 |
self.hf_api_key = os.getenv('HF_API_KEY')
|
|
|
203 |
self.client = InferenceClient(api_key=self.hf_api_key)
|
204 |
self.student_metrics_df = student_metrics_df
|
205 |
|
206 |
+
|
207 |
def read_excel(self, uploaded_file):
|
208 |
return pd.read_excel(uploaded_file)
|
209 |
|
|
|
219 |
df['Session Start Time'] = self.safe_convert_to_time(df['Session Start Time'], '%I:%M %p')
|
220 |
df['Session End Time'] = self.safe_convert_to_time(df['Session End Time'], '%I:%M %p')
|
221 |
return df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
|
223 |
def safe_convert_to_time(self, series, format_str='%I:%M %p'):
|
224 |
try:
|
|
|
267 |
'Total Number of Days Available': [total_days]
|
268 |
})
|
269 |
|
270 |
+
def classify_engagement(self, engagement_str):
|
271 |
+
engagement_str = engagement_str.lower()
|
272 |
+
if engagement_str.startswith(self.ENGAGED_STR.lower()):
|
273 |
+
return self.ENGAGED_STR
|
274 |
+
elif engagement_str.startswith(self.PARTIALLY_ENGAGED_STR.lower()):
|
275 |
+
return self.PARTIALLY_ENGAGED_STR
|
276 |
+
elif engagement_str.startswith(self.NOT_ENGAGED_STR.lower()):
|
277 |
+
return self.NOT_ENGAGED_STR
|
278 |
+
else:
|
279 |
+
return 'Unknown'
|
280 |
+
|
281 |
def compute_student_metrics(self, df):
|
282 |
intervention_df = df[df[self.INTERVENTION_COLUMN].str.strip().str.lower() == 'yes']
|
283 |
intervention_sessions_held = len(intervention_df)
|
|
|
289 |
student_data = intervention_df[[col]].copy()
|
290 |
student_data[col] = student_data[col].fillna('Absent')
|
291 |
|
292 |
+
attendance_values = student_data[col].apply(lambda x: 1 if self.classify_engagement(x) in [
|
293 |
self.ENGAGED_STR,
|
294 |
self.PARTIALLY_ENGAGED_STR,
|
295 |
self.NOT_ENGAGED_STR
|
|
|
300 |
attendance_pct = round(attendance_pct)
|
301 |
|
302 |
engagement_counts = {
|
303 |
+
self.ENGAGED_STR: 0,
|
304 |
+
self.PARTIALLY_ENGAGED_STR: 0,
|
305 |
+
self.NOT_ENGAGED_STR: 0,
|
306 |
'Absent': 0
|
307 |
}
|
308 |
|
309 |
for x in student_data[col]:
|
310 |
+
classified_engagement = self.classify_engagement(x)
|
311 |
+
if classified_engagement in engagement_counts:
|
312 |
+
engagement_counts[classified_engagement] += 1
|
|
|
|
|
|
|
313 |
else:
|
314 |
engagement_counts['Absent'] += 1 # Count as Absent if not engaged
|
315 |
|
|
|
317 |
total_sessions = sum(engagement_counts.values())
|
318 |
|
319 |
# Engagement (%)
|
320 |
+
engagement_pct = (engagement_counts[self.ENGAGED_STR] / total_sessions * 100) if total_sessions > 0 else 0
|
321 |
engagement_pct = round(engagement_pct)
|
322 |
|
323 |
+
engaged_pct = (engagement_counts[self.ENGAGED_STR] / total_sessions * 100) if total_sessions > 0 else 0
|
324 |
engaged_pct = round(engaged_pct)
|
325 |
|
326 |
+
partially_engaged_pct = (engagement_counts[self.PARTIALLY_ENGAGED_STR] / total_sessions * 100) if total_sessions > 0 else 0
|
327 |
partially_engaged_pct = round(partially_engaged_pct)
|
328 |
|
329 |
+
not_engaged_pct = (engagement_counts[self.NOT_ENGAGED_STR] / total_sessions * 100) if total_sessions > 0 else 0
|
330 |
not_engaged_pct = round(not_engaged_pct)
|
331 |
|
332 |
absent_pct = (engagement_counts['Absent'] / total_sessions * 100) if total_sessions > 0 else 0
|
|
|
343 |
'Attended ≥ 90%': attended_90,
|
344 |
'Engagement ≥ 80%': engaged_80,
|
345 |
'Attendance (%)': attendance_pct,
|
|
|
346 |
'Engagement (%)': engagement_pct,
|
347 |
+
f'{self.ENGAGED_STR} (%)': engaged_pct,
|
348 |
+
f'{self.PARTIALLY_ENGAGED_STR} (%)': partially_engaged_pct,
|
349 |
+
f'{self.NOT_ENGAGED_STR} (%)': not_engaged_pct,
|
350 |
'Absent (%)': absent_pct
|
351 |
}
|
352 |
|
|
|
354 |
student_metrics_df = pd.DataFrame.from_dict(student_metrics, orient='index').reset_index()
|
355 |
student_metrics_df.rename(columns={'index': 'Student'}, inplace=True)
|
356 |
return student_metrics_df
|
357 |
+
|
358 |
def compute_average_metrics(self, student_metrics_df):
|
359 |
# Calculate the attendance and engagement average percentages across students
|
360 |
attendance_avg_stats = student_metrics_df['Attendance (%)'].mean() # Calculate the average attendance percentage
|