Update data_processor.py
Browse files- data_processor.py +20 -234
data_processor.py
CHANGED
@@ -1,235 +1,3 @@
|
|
1 |
-
# import re
|
2 |
-
# import pandas as pd
|
3 |
-
# import os
|
4 |
-
# from huggingface_hub import InferenceClient
|
5 |
-
|
6 |
-
# class DataProcessor:
|
7 |
-
# INTERVENTION_COLUMN_OPTIONS = [
|
8 |
-
# 'Did the intervention happen today?',
|
9 |
-
# 'Did the intervention take place today?'
|
10 |
-
# ]
|
11 |
-
# YES_RESPONSES = ['yes', 'assessment day'] # Added this line
|
12 |
-
# ENGAGED_STR = 'Engaged'
|
13 |
-
# PARTIALLY_ENGAGED_STR = 'Partially Engaged'
|
14 |
-
# NOT_ENGAGED_STR = 'Not Engaged'
|
15 |
-
|
16 |
-
# def __init__(self, student_metrics_df=None):
|
17 |
-
# self.hf_api_key = os.getenv('HF_API_KEY')
|
18 |
-
# if not self.hf_api_key:
|
19 |
-
# raise ValueError("HF_API_KEY not set in environment variables")
|
20 |
-
# self.client = InferenceClient(api_key=self.hf_api_key)
|
21 |
-
# self.student_metrics_df = student_metrics_df
|
22 |
-
# self.intervention_column = None # Will be set when processing data
|
23 |
-
|
24 |
-
# def read_excel(self, uploaded_file):
|
25 |
-
# return pd.read_excel(uploaded_file)
|
26 |
-
|
27 |
-
# def format_session_data(self, df):
|
28 |
-
# date_column = next((col for col in df.columns if col in ["Date of Session", "Date"]), None)
|
29 |
-
# if date_column:
|
30 |
-
# df[date_column] = pd.to_datetime(df[date_column], errors='coerce').dt.date
|
31 |
-
# else:
|
32 |
-
# print("Warning: Neither 'Date of Session' nor 'Date' column found in the dataframe.")
|
33 |
-
|
34 |
-
# df['Timestamp'] = self.safe_convert_to_datetime(df['Timestamp'], '%I:%M %p')
|
35 |
-
# df['Session Start Time'] = self.safe_convert_to_time(df['Session Start Time'], '%I:%M %p')
|
36 |
-
# df['Session End Time'] = self.safe_convert_to_time(df['Session End Time'], '%I:%M %p')
|
37 |
-
# return df
|
38 |
-
|
39 |
-
# def safe_convert_to_time(self, series, format_str='%I:%M %p'):
|
40 |
-
# try:
|
41 |
-
# converted = pd.to_datetime(series, format='%H:%M:%S', errors='coerce')
|
42 |
-
# if format_str:
|
43 |
-
# return converted.dt.strftime(format_str)
|
44 |
-
# return converted
|
45 |
-
# except Exception as e:
|
46 |
-
# print(f"Error converting series to time: {e}")
|
47 |
-
# return series
|
48 |
-
|
49 |
-
# def safe_convert_to_datetime(self, series, format_str=None):
|
50 |
-
# try:
|
51 |
-
# converted = pd.to_datetime(series, errors='coerce')
|
52 |
-
# if format_str:
|
53 |
-
# return converted.dt.strftime(format_str)
|
54 |
-
# return converted
|
55 |
-
# except Exception as e:
|
56 |
-
# print(f"Error converting series to datetime: {e}")
|
57 |
-
# return series
|
58 |
-
|
59 |
-
# def replace_student_names_with_initials(self, df):
|
60 |
-
# updated_columns = []
|
61 |
-
# for col in df.columns:
|
62 |
-
# if 'Student Attendance' in col:
|
63 |
-
# # Search for the last occurrence of text within square brackets at the end of the string
|
64 |
-
# match = re.search(r'\[(.+?)\]$', col)
|
65 |
-
# if not match:
|
66 |
-
# # Handle cases where the closing bracket might be missing
|
67 |
-
# match = re.search(r'\[(.+)$', col)
|
68 |
-
# if match:
|
69 |
-
# name = match.group(1).strip()
|
70 |
-
# # Remove any trailing closing bracket if it wasn't matched earlier
|
71 |
-
# name = name.rstrip(']')
|
72 |
-
# # Get initials
|
73 |
-
# initials = ''.join([part[0] for part in name.strip().split()])
|
74 |
-
# updated_col = f'Student Attendance [{initials}]'
|
75 |
-
# updated_columns.append(updated_col)
|
76 |
-
# else:
|
77 |
-
# # If no match is found, keep the column name as is
|
78 |
-
# updated_columns.append(col)
|
79 |
-
# else:
|
80 |
-
# updated_columns.append(col)
|
81 |
-
# df.columns = updated_columns
|
82 |
-
# return df
|
83 |
-
|
84 |
-
|
85 |
-
# def find_intervention_column(self, df):
|
86 |
-
# for column in self.INTERVENTION_COLUMN_OPTIONS:
|
87 |
-
# if column in df.columns:
|
88 |
-
# self.intervention_column = column
|
89 |
-
# return column
|
90 |
-
# raise ValueError("No intervention column found in the dataframe.")
|
91 |
-
|
92 |
-
# def get_intervention_column(self, df):
|
93 |
-
# if self.intervention_column is None:
|
94 |
-
# self.intervention_column = self.find_intervention_column(df)
|
95 |
-
# return self.intervention_column
|
96 |
-
|
97 |
-
# def compute_intervention_statistics(self, df):
|
98 |
-
# intervention_column = self.get_intervention_column(df)
|
99 |
-
# total_days = len(df)
|
100 |
-
# sessions_held = df[intervention_column].str.strip().str.lower().isin(self.YES_RESPONSES).sum() # Modified line
|
101 |
-
# intervention_frequency = (sessions_held / total_days) * 100 if total_days > 0 else 0
|
102 |
-
# return pd.DataFrame({
|
103 |
-
# 'Intervention Dosage (%)': [round(intervention_frequency, 0)],
|
104 |
-
# 'Intervention Sessions Held': [sessions_held],
|
105 |
-
# 'Intervention Sessions Not Held': [total_days - sessions_held],
|
106 |
-
# 'Total Number of Days Available': [total_days]
|
107 |
-
# })
|
108 |
-
|
109 |
-
# def classify_engagement(self, engagement_str):
|
110 |
-
# engagement_str = str(engagement_str).lower()
|
111 |
-
# if engagement_str.startswith(self.ENGAGED_STR.lower()):
|
112 |
-
# return self.ENGAGED_STR
|
113 |
-
# elif engagement_str.startswith(self.PARTIALLY_ENGAGED_STR.lower()):
|
114 |
-
# return self.PARTIALLY_ENGAGED_STR
|
115 |
-
# elif engagement_str.startswith(self.NOT_ENGAGED_STR.lower()):
|
116 |
-
# return self.NOT_ENGAGED_STR
|
117 |
-
# else:
|
118 |
-
# return 'Unknown'
|
119 |
-
|
120 |
-
# def compute_student_metrics(self, df):
|
121 |
-
# intervention_column = self.get_intervention_column(df)
|
122 |
-
# intervention_df = df[df[intervention_column].str.strip().str.lower().isin(self.YES_RESPONSES)]
|
123 |
-
# intervention_sessions_held = len(intervention_df)
|
124 |
-
# student_columns = [col for col in df.columns if col.startswith('Student Attendance')]
|
125 |
-
|
126 |
-
# student_metrics = {}
|
127 |
-
# for col in student_columns:
|
128 |
-
# student_name = col.replace('Student Attendance [', '').replace(']', '').strip()
|
129 |
-
# student_data = intervention_df[[col]].copy()
|
130 |
-
# student_data[col] = student_data[col].fillna('Absent')
|
131 |
-
|
132 |
-
# # Classify each entry
|
133 |
-
# student_data['Engagement'] = student_data[col].apply(self.classify_engagement)
|
134 |
-
|
135 |
-
# # Calculate attendance
|
136 |
-
# attendance_values = student_data['Engagement'].apply(
|
137 |
-
# lambda x: 1 if x in [self.ENGAGED_STR, self.PARTIALLY_ENGAGED_STR, self.NOT_ENGAGED_STR] else 0
|
138 |
-
# )
|
139 |
-
|
140 |
-
# sessions_attended = attendance_values.sum()
|
141 |
-
# attendance_pct = (sessions_attended / intervention_sessions_held * 100) if intervention_sessions_held > 0 else 0
|
142 |
-
# attendance_pct = round(attendance_pct)
|
143 |
-
|
144 |
-
# # Engagement counts (excluding 'Absent')
|
145 |
-
# engagement_counts = {
|
146 |
-
# self.ENGAGED_STR: 0,
|
147 |
-
# self.PARTIALLY_ENGAGED_STR: 0,
|
148 |
-
# self.NOT_ENGAGED_STR: 0
|
149 |
-
# }
|
150 |
-
|
151 |
-
# # Count the engagement types, excluding 'Absent'
|
152 |
-
# for x in student_data['Engagement']:
|
153 |
-
# if x in engagement_counts:
|
154 |
-
# engagement_counts[x] += 1
|
155 |
-
# # 'Absent' is not counted in engagement_counts
|
156 |
-
|
157 |
-
# total_present_sessions = sum(engagement_counts.values())
|
158 |
-
|
159 |
-
# engaged_pct = (
|
160 |
-
# (engagement_counts[self.ENGAGED_STR] / total_present_sessions * 100)
|
161 |
-
# if total_present_sessions > 0 else 0
|
162 |
-
# )
|
163 |
-
# engaged_pct = round(engaged_pct)
|
164 |
-
|
165 |
-
# partially_engaged_pct = (
|
166 |
-
# (engagement_counts[self.PARTIALLY_ENGAGED_STR] / total_present_sessions * 100)
|
167 |
-
# if total_present_sessions > 0 else 0
|
168 |
-
# )
|
169 |
-
# partially_engaged_pct = round(partially_engaged_pct)
|
170 |
-
|
171 |
-
# not_engaged_pct = (
|
172 |
-
# (engagement_counts[self.NOT_ENGAGED_STR] / total_present_sessions * 100)
|
173 |
-
# if total_present_sessions > 0 else 0
|
174 |
-
# )
|
175 |
-
# not_engaged_pct = round(not_engaged_pct)
|
176 |
-
|
177 |
-
# # Engagement percentage is based on Engaged and Partially Engaged sessions
|
178 |
-
# engagement_pct = (
|
179 |
-
# ((engagement_counts[self.ENGAGED_STR] + engagement_counts[self.PARTIALLY_ENGAGED_STR]) / total_present_sessions * 100)
|
180 |
-
# if total_present_sessions > 0 else 0
|
181 |
-
# )
|
182 |
-
# engagement_pct = round(engagement_pct)
|
183 |
-
|
184 |
-
# # Absent percentage (for reference, not used in engagement calculation)
|
185 |
-
# absent_sessions = student_data['Engagement'].value_counts().get('Absent', 0)
|
186 |
-
# absent_pct = (absent_sessions / intervention_sessions_held * 100) if intervention_sessions_held > 0 else 0
|
187 |
-
# absent_pct = round(absent_pct)
|
188 |
-
|
189 |
-
# # Determine if the student attended ≥ 90% of sessions
|
190 |
-
# attended_90 = "Yes" if attendance_pct >= 90 else "No"
|
191 |
-
|
192 |
-
# # Determine if the student was engaged ≥ 80% of the time
|
193 |
-
# engaged_80 = "Yes" if engagement_pct >= 80 else "No"
|
194 |
-
|
195 |
-
# # Store metrics
|
196 |
-
# student_metrics[student_name] = {
|
197 |
-
# 'Attended ≥ 90%': attended_90,
|
198 |
-
# 'Engagement ≥ 80%': engaged_80,
|
199 |
-
# 'Attendance (%)': attendance_pct,
|
200 |
-
# 'Engagement (%)': engagement_pct,
|
201 |
-
# f'{self.ENGAGED_STR} (%)': engaged_pct,
|
202 |
-
# f'{self.PARTIALLY_ENGAGED_STR} (%)': partially_engaged_pct,
|
203 |
-
# f'{self.NOT_ENGAGED_STR} (%)': not_engaged_pct,
|
204 |
-
# 'Absent (%)': absent_pct
|
205 |
-
# }
|
206 |
-
|
207 |
-
# # Create a DataFrame from student_metrics
|
208 |
-
# student_metrics_df = pd.DataFrame.from_dict(student_metrics, orient='index').reset_index()
|
209 |
-
# student_metrics_df.rename(columns={'index': 'Student'}, inplace=True)
|
210 |
-
# return student_metrics_df
|
211 |
-
|
212 |
-
# def compute_average_metrics(self, student_metrics_df):
|
213 |
-
# # Calculate the attendance and engagement average percentages across students
|
214 |
-
# attendance_avg_stats = student_metrics_df['Attendance (%)'].mean() # Average attendance percentage
|
215 |
-
# engagement_avg_stats = student_metrics_df['Engagement (%)'].mean() # Average engagement percentage
|
216 |
-
|
217 |
-
# # Round the averages to whole numbers
|
218 |
-
# attendance_avg_stats = round(attendance_avg_stats)
|
219 |
-
# engagement_avg_stats = round(engagement_avg_stats)
|
220 |
-
|
221 |
-
# return attendance_avg_stats, engagement_avg_stats
|
222 |
-
|
223 |
-
# def evaluate_student(self, row, attendance_threshold=90, engagement_threshold=80):
|
224 |
-
# if row["Attended ≥ 90%"] == "No":
|
225 |
-
# return "Address Attendance"
|
226 |
-
# elif row["Engagement ≥ 80%"] == "No":
|
227 |
-
# return "Address Engagement"
|
228 |
-
# else:
|
229 |
-
# return "Consider barriers, fidelity, and progress monitoring"
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
import re
|
234 |
import pandas as pd
|
235 |
import os
|
@@ -457,14 +225,32 @@ class DataProcessor:
|
|
457 |
student_metrics_df.rename(columns={'index': 'Student'}, inplace=True)
|
458 |
return student_metrics_df
|
459 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
460 |
def compute_average_metrics(self, student_metrics_df):
|
461 |
# Filter out rows with NaN values (inactive students)
|
462 |
active_students_df = student_metrics_df.dropna()
|
463 |
|
464 |
-
# Calculate the attendance
|
465 |
attendance_avg_stats = active_students_df['Attendance (%)'].mean()
|
466 |
-
engagement_avg_stats = active_students_df[f'{self.ENGAGED_STR} (%)'].mean()
|
467 |
|
|
|
|
|
|
|
|
|
|
|
468 |
# Round the averages to whole numbers
|
469 |
attendance_avg_stats = round(attendance_avg_stats)
|
470 |
engagement_avg_stats = round(engagement_avg_stats)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import re
|
2 |
import pandas as pd
|
3 |
import os
|
|
|
225 |
student_metrics_df.rename(columns={'index': 'Student'}, inplace=True)
|
226 |
return student_metrics_df
|
227 |
|
228 |
+
# def compute_average_metrics(self, student_metrics_df):
|
229 |
+
# # Filter out rows with NaN values (inactive students)
|
230 |
+
# active_students_df = student_metrics_df.dropna()
|
231 |
+
|
232 |
+
# # Calculate the attendance and engagement average percentages across active students
|
233 |
+
# attendance_avg_stats = active_students_df['Attendance (%)'].mean()
|
234 |
+
# engagement_avg_stats = active_students_df[f'{self.ENGAGED_STR} (%)'].mean()
|
235 |
+
|
236 |
+
# # Round the averages to whole numbers
|
237 |
+
# attendance_avg_stats = round(attendance_avg_stats)
|
238 |
+
# engagement_avg_stats = round(engagement_avg_stats)
|
239 |
+
|
240 |
+
# return attendance_avg_stats, engagement_avg_stats
|
241 |
+
|
242 |
def compute_average_metrics(self, student_metrics_df):
|
243 |
# Filter out rows with NaN values (inactive students)
|
244 |
active_students_df = student_metrics_df.dropna()
|
245 |
|
246 |
+
# Calculate the attendance average percentage across active students
|
247 |
attendance_avg_stats = active_students_df['Attendance (%)'].mean()
|
|
|
248 |
|
249 |
+
# Calculate the engagement average percentage across active students
|
250 |
+
# Only consider 'Engaged' and 'Partially Engaged' percentages, exclude 'Absent'
|
251 |
+
total_engagement = active_students_df[f'{self.ENGAGED_STR} (%)'] + active_students_df[f'{self.PARTIALLY_ENGAGED_STR} (%)']
|
252 |
+
engagement_avg_stats = total_engagement.mean()
|
253 |
+
|
254 |
# Round the averages to whole numbers
|
255 |
attendance_avg_stats = round(attendance_avg_stats)
|
256 |
engagement_avg_stats = round(engagement_avg_stats)
|