File size: 5,325 Bytes
5f1f9d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import streamlit as st
import base64
from huggingface_hub import InferenceClient

# Function to encode the image to base64
def encode_image(image_file):
    return base64.b64encode(image_file.getvalue()).decode("utf-8")

# Streamlit page setup
st.set_page_config(page_title="MTSS Image Accessibility Alt Text Generator", layout="centered", initial_sidebar_state="auto")

# Add the image with a specified width
image_width = 300  # Set the desired width in pixels
st.image('MTSS.ai_Logo.png', width=image_width)

st.header('VisionTexts™ | Accessibility')
st.subheader('Image Alt Text Creator')

# Initialize the Hugging Face InferenceClient with the API key from Streamlit secrets
client = InferenceClient(api_key=st.secrets["huggingface_api_key"])

# File uploader
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])

if uploaded_file:
    # Display the uploaded image with specified width
    image_width = 200  # Set the desired width in pixels
    with st.expander("Image", expanded=True):
        st.image(uploaded_file, caption=uploaded_file.name, width=image_width, use_column_width=False)

# Toggle for showing additional details input
show_details = st.checkbox("Add details about the image.", value=False)

if show_details:
    # Text input for additional details about the image
    additional_details = st.text_area(
        "The details could include specific information that is important to include in the alt text or reflect why the image is being used:",
        disabled=not show_details
    )

# Toggle for modifying the prompt for complex images
complex_image = st.checkbox("Is this a complex image?", value=False)

if complex_image:
    # Caption explaining the impact of the complex image toggle
    st.caption(
        "By clicking this toggle, it will instruct the app to create a description that exceeds the 125-character limit. "
        "Add the description in a placeholder behind the image and 'Description in the content placeholder' in the alt text box."
    )

# Button to trigger the analysis
analyze_button = st.button("Analyze the Image", type="secondary")

# Optimized prompt for complex images
complex_image_prompt_text = (
    "As an expert in image accessibility and alternative text, thoroughly describe the image provided. "
    "Provide a brief description using not more than 500 characters that conveys the essential information in eight or fewer clear and concise sentences. "
    "Skip phrases like 'image of' or 'picture of.' "
    "Your description should form a clear, well-structured, and factual paragraph that avoids bullet points, focusing on creating a seamless narrative."
)

# Check if an image has been uploaded and if the analyze button has been pressed
if uploaded_file is not None and analyze_button:

    with st.spinner("Analyzing the image ..."):
        # Encode the image
        base64_image = encode_image(uploaded_file)

        # Determine which prompt to use based on the complexity of the image
        if complex_image:
            prompt_text = complex_image_prompt_text
        else:
            prompt_text = (
                "As an expert in image accessibility and alternative text, succinctly describe the image provided in less than 125 characters. "
                "Provide a brief description using not more than 125 characters that conveys the essential information in three or fewer clear and concise sentences for use as alt text. "
                "Skip phrases like 'image of' or 'picture of.' "
                "Your description should form a clear, well-structured, and factual paragraph that avoids bullet points and newlines, focusing on creating a seamless narrative for accessibility purposes."
            )

        if show_details and additional_details:
            prompt_text += (
                f"\n\nInclude the additional context provided by the user in your description:\n{additional_details}"
            )

        # Create the payload for the completion request
        messages = [
            {
                "role": "user",
                "content": [
                    {"type": "text", "text": prompt_text},
                    {
                        "type": "image",
                        "image": {
                            # Provide the image bytes directly
                            "bytes": base64.b64decode(base64_image)
                        },
                    },
                ],
            }
        ]

        # Make the request to the Hugging Face API
        try:
            # Send the request to the model
            completion = client.chat_completions(
                model="meta-llama/Llama-3.2-11B-Vision-Instruct",
                messages=messages,
                max_new_tokens=1200
            )

            # Extract the assistant's response
            assistant_response = completion.get("choices")[0]["message"]["content"]

            # Display the response
            st.markdown(assistant_response)

            st.success('Powered by MTSS GPT. AI can make mistakes. Consider checking important information.')
        except Exception as e:
            st.error(f"An error occurred: {e}")
else:
    # Warning for user action required
    if not uploaded_file and analyze_button:
        st.warning("Please upload an image.")