File size: 4,194 Bytes
f76d77f
 
ed9a81c
ea6a4e1
f76d77f
 
 
 
 
047420b
a507e51
a574f9a
 
 
a507e51
a574f9a
 
a507e51
b3484d2
047420b
f76d77f
b3484d2
f76d77f
 
a2d596c
b3484d2
 
a2d596c
 
b3484d2
 
a2d596c
4996d49
 
a2d596c
 
 
 
 
4996d49
b3484d2
a2d596c
8e253a5
f600388
8e253a5
b3484d2
8e253a5
4996d49
8e253a5
 
4996d49
 
 
 
b3484d2
 
4996d49
b3484d2
4996d49
b3484d2
 
 
 
4996d49
 
 
 
 
 
 
 
 
 
 
 
 
b3484d2
4996d49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import streamlit as st
import base64
import openai 

# Function to encode the image to base64
def encode_image(image_file):
    return base64.b64encode(image_file.getvalue()).decode("utf-8")

# Streamlit page setup
st.set_page_config(page_title="MTSS Image Accessibility Alt Text Generator", layout="centered", initial_sidebar_state="collapsed")

#Add the image with a specified width
image_width = 300  # Set the desired width in pixels
st.image('MTSS.ai_Logo.png', width=image_width)

st.title('MTSS VisionText™ | Accessibility')
st.subheader(':green[_Image Alt Text Generator_]')

# Retrieve the OpenAI API Key from secrets
openai.api_key = st.secrets["openai_api_key"]

# File uploader allows user to add their own image
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])

if uploaded_file:
    # Display the uploaded image
    with st.expander("Image", expanded = True):
        st.image(uploaded_file, caption=uploaded_file.name, use_column_width=True)

# Toggle for showing additional details input
show_details = st.toggle("Add details about the image", value=False)

if show_details:
    # Text input for additional details about the image, shown only if toggle is True
    additional_details = st.text_area(
        "Add any additional details or context about the image here:",
        disabled=not show_details
    )

# Button to trigger the analysis
analyze_button = st.button("Analyse the Image", type="secondary")

# Check if an image has been uploaded, if the API key is available, and if the button has been pressed
if uploaded_file is not None and analyze_button:

    with st.spinner("Analyzing the image ..."):
        # Encode the image
        base64_image = encode_image(uploaded_file)
    
        # Optimized prompt for additional clarity and detail
        prompt_text = (
            "You are a highly knowledgeable accessibility expert. "
            "Your task is to examine the following image in detail. "
            "Provide a comprehensive, factual, and accurate explanation of what the image depicts. "
            "Highlight key elements and their significance, and present your analysis in clear, well-structured markdown format. "
            "Create a detailed image caption in explaining in 150 words or less."
        )
    
        if show_details and additional_details:
            prompt_text += (
                f"\n\nAdditional Context Provided by the User:\n{additional_details}"
            )
    
        # Create the payload for the completion request
        messages = [
            {
                "role": "user",
                "content": [
                    {"type": "text", "text": prompt_text},
                    {
                        "type": "image_url",
                        "image_url": f"data:image/jpeg;base64,{base64_image}",
                    },
                ],
            }
        ]
    
        # Make the request to the OpenAI API
        try:
            # Without Stream
            
            # response = openai.chat.completions.create(
            #     model="gpt-4-vision-preview", messages=messages, max_tokens=500, stream=False
            # )
    
            # Stream the response
            full_response = ""
            message_placeholder = st.empty()
            for completion in openai.chat.completions.create(
                model="gpt-4-vision-preview", messages=messages, 
                max_tokens=150, stream=True
            ):
                # Check if there is content to display
                if completion.choices[0].delta.content is not None:
                    full_response += completion.choices[0].delta.content
                    message_placeholder.markdown(full_response + "▌")
            # Final update to placeholder after the stream ends
            message_placeholder.markdown(full_response)
    
            # Display the response in the app
            # st.write(response.choices[0].message.content)
        except Exception as e:
            st.error(f"An error occurred: {e}")
else:
    # Warnings for user action required
    if not uploaded_file and analyze_button:
        st.warning("Please upload an image.")