Spaces:
Sleeping
Sleeping
File size: 6,804 Bytes
f76d77f e47c925 ea6a4e1 f76d77f 7964be8 a507e51 9622677 8ec3355 9622677 20c1376 27546e6 b2c4f26 8ec3355 9622677 7c39bed 09611fa 506b62a 3c5c8af 27546e6 a2d596c e266d76 9622677 0207697 9622677 e266d76 9622677 a009ec6 4996d49 9622677 a2d596c 9622677 a2d596c 9622677 dd32d54 a009ec6 9622677 a009ec6 9622677 a009ec6 9622677 a009ec6 9622677 a009ec6 9622677 fe2e692 9622677 a009ec6 9622677 506b62a 9622677 8ec3355 9622677 3c5c8af a009ec6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import streamlit as st
import base64
import openai
# Function to encode the image to base64
def encode_image(image_file):
return base64.b64encode(image_file.getvalue()).decode("utf-8")
# Streamlit page setup
st.set_page_config(page_title="MTSS Image Accessibility Alt Text Generator", layout="centered", initial_sidebar_state="auto")
# initial_sidebar_state ("auto" or "expanded" or "collapsed")
#Add the image with a specified width
image_width = 300 # Set the desired width in pixels
st.image('MTSS.ai_Logo.png', width=image_width)
# st.title('MTSS:grey[.ai]')
st.header('VisionTexts™ | Accessibility')
# st.subheader(':green[_Image Alt Text Generator_]')
st.subheader('Image Alt Text Creator')
# Retrieve the OpenAI API Key from secrets
openai.api_key = st.secrets["openai_api_key"]
# File uploader allows user to add their own image
# uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
# st.write("Please upload an image in the sidebar.")
# st.markdown("<span style='color:green; font-weight:bold;'>Please upload an image in the left sidebar.</span>", unsafe_allow_html=True)
# Move the file uploader to the sidebar
# uploaded_file = st.sidebar.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
# if uploaded_file:
# # Display the uploaded image with specified width
# image_width = 200 # Set the desired width in pixels
# with st.expander("Image", expanded=True):
# st.sidebar.image(uploaded_file, caption=uploaded_file.name, width=image_width, use_column_width=False)
if uploaded_file:
# Display the uploaded image with specified width
image_width = 200 # Set the desired width in pixels
with st.expander("Image", expanded=True):
st.image(uploaded_file, caption=uploaded_file.name, width=image_width, use_column_width=False)
# Toggle for showing additional details input
show_details = st.toggle("Add details about the image. ", value=False)
if show_details:
# Text input for additional details about the image, shown only if toggle is True
additional_details = st.text_area(
"The details could include specific information that is important to include in the alt text or reflect why the image is being used:",
disabled=not show_details
)
# Toggle for modifying the prompt for complex images
complex_image = st.toggle("Is this a complex image? ", value=False)
if complex_image:
# Text input for additional details about the image, shown only if toggle is True
complex_image_details = st.caption(
"By clicking this toggle, it will inform MTSS.ai to create a description that exceeds the 125 character limit. "
"Add the description in a placeholder behind the image and 'Description in the content placeholder' in the alt text box. "
)
# Button to trigger the analysis
analyze_button = st.button("Analyze the Image", type="secondary")
# Optimized prompt for complex images
complex_image_prompt_text = (
"As an expert in image accessibility and alternative text, thoroughly describe the image provided. "
"Provide a brief description using not more than 500 characters that convey the essential information conveyed by the image in eight or fewer clear and concise sentences. "
"Skip phrases like 'image of' or 'picture of.' "
"Your description should form a clear, well-structured, and factual paragraph that avoids bullet points, focusing on creating a seamless narrative."
)
# Check if an image has been uploaded, if the API key is available, and if the button has been pressed
if uploaded_file is not None and analyze_button:
with st.spinner("Analyzing the image ..."):
# Encode the image
base64_image = encode_image(uploaded_file)
# Determine which prompt to use based on the complexity of the image
if complex_image:
prompt_text = complex_image_prompt_text
else:
prompt_text = (
"As an expert in image accessibility and alternative text, succinctly describe the image provided in less than 125 characters. "
"Provide a brief description using not more than 125 characters that convey the essential information conveyed by the image in three or fewer clear and concise sentences for use as alt text. "
"Skip phrases like 'image of' or 'picture of.' "
"Your description should form a clear, well-structured, and factual paragraph that avoids bullet points and newlines, focusing on creating a seamless narrative that serves as effective alternative text for accessibility purposes."
)
if show_details and additional_details:
prompt_text += (
f"\n\nInclude the additional context provided by the user in your description:\n{additional_details}"
)
# Create the payload for the completion request
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": prompt_text},
{
"type": "image_url",
"image_url": f"data:image/jpeg;base64,{base64_image}",
},
],
}
]
# Make the request to the OpenAI API
try:
# Without Stream
# response = openai.chat.completions.create(
# model="gpt-4-vision-preview", messages=messages, max_tokens=250, stream=False
# )
# Stream the response
full_response = ""
message_placeholder = st.empty()
for completion in openai.chat.completions.create(
model="gpt-4-vision-preview", messages=messages,
max_tokens=1200, stream=True
):
# Check if there is content to display
if completion.choices[0].delta.content is not None:
full_response += completion.choices[0].delta.content
message_placeholder.markdown(full_response + "▌")
# Final update to placeholder after the stream ends
message_placeholder.markdown(full_response)
# # Display the response in a text area
# st.text_area('Response:', value=full_response, height=250, key="response_text_area")
st.success('Powered by MTSS GPT. AI can make mistakes. Consider checking important information.')
except Exception as e:
st.error(f"An error occurred: {e}")
else:
# Warnings for user action required
if not uploaded_file and analyze_button:
st.warning("Please upload an image.")
|