Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
import streamlit as st
|
2 |
-
|
3 |
-
from huggingface_hub import InferenceClient
|
4 |
from PIL import Image
|
5 |
import base64
|
|
|
6 |
|
7 |
# Streamlit page setup
|
8 |
st.set_page_config(page_title="MTSS Image Accessibility Alt Text Generator", layout="centered", initial_sidebar_state="auto")
|
@@ -17,22 +17,21 @@ st.subheader('Image Alt Text Creator')
|
|
17 |
# Retrieve the Hugging Face API Key from secrets
|
18 |
huggingface_api_key = st.secrets["huggingface_api_key"]
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
-
|
23 |
-
model="Salesforce/blip-image-captioning-large",
|
24 |
-
use_auth_token=huggingface_api_key
|
25 |
-
)
|
26 |
|
27 |
-
|
28 |
-
|
|
|
|
|
29 |
|
30 |
# File uploader allows user to add their own image
|
31 |
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
|
32 |
|
33 |
if uploaded_file:
|
34 |
# Display the uploaded image
|
35 |
-
image = Image.open(uploaded_file)
|
36 |
image_width = 200 # Set the desired width in pixels
|
37 |
with st.expander("Image", expanded=True):
|
38 |
st.image(image, caption=uploaded_file.name, width=image_width, use_column_width=False)
|
@@ -64,58 +63,75 @@ complex_image_prompt_text = (
|
|
64 |
"Your description should form a clear, well-structured, and factual paragraph that avoids bullet points, focusing on creating a seamless narrative."
|
65 |
)
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
# Check if an image has been uploaded and if the button has been pressed
|
68 |
if uploaded_file is not None and analyze_button:
|
69 |
with st.spinner("Analyzing the image..."):
|
70 |
-
# Get the caption from the image using the image captioning
|
71 |
-
caption_response =
|
72 |
-
image_caption = caption_response[0]['generated_text']
|
73 |
|
74 |
-
#
|
75 |
-
if
|
76 |
-
|
77 |
else:
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
if 'generated_text' in chunk:
|
111 |
-
content = chunk['generated_text']
|
112 |
-
full_response += content
|
113 |
-
message_placeholder.markdown(full_response + "▌")
|
114 |
-
# Final update after stream ends
|
115 |
-
message_placeholder.markdown(full_response)
|
116 |
-
|
117 |
-
st.success('Powered by MTSS GPT. AI can make mistakes. Consider checking important information.')
|
118 |
-
except Exception as e:
|
119 |
-
st.error(f"An error occurred: {e}")
|
120 |
else:
|
121 |
st.write("Please upload an image and click 'Analyze the Image' to generate alt text.")
|
|
|
1 |
import streamlit as st
|
2 |
+
import requests
|
|
|
3 |
from PIL import Image
|
4 |
import base64
|
5 |
+
import io
|
6 |
|
7 |
# Streamlit page setup
|
8 |
st.set_page_config(page_title="MTSS Image Accessibility Alt Text Generator", layout="centered", initial_sidebar_state="auto")
|
|
|
17 |
# Retrieve the Hugging Face API Key from secrets
|
18 |
huggingface_api_key = st.secrets["huggingface_api_key"]
|
19 |
|
20 |
+
# API endpoints
|
21 |
+
API_URL_CAPTION = "https://api-inference.huggingface.co/models/Salesforce/blip-image-captioning-large"
|
22 |
+
API_URL_LLM = "https://api-inference.huggingface.co/models/meta-llama/Llama-2-7b-chat-hf"
|
|
|
|
|
|
|
23 |
|
24 |
+
headers = {
|
25 |
+
"Authorization": f"Bearer {huggingface_api_key}",
|
26 |
+
"Content-Type": "application/json"
|
27 |
+
}
|
28 |
|
29 |
# File uploader allows user to add their own image
|
30 |
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
|
31 |
|
32 |
if uploaded_file:
|
33 |
# Display the uploaded image
|
34 |
+
image = Image.open(uploaded_file).convert('RGB')
|
35 |
image_width = 200 # Set the desired width in pixels
|
36 |
with st.expander("Image", expanded=True):
|
37 |
st.image(image, caption=uploaded_file.name, width=image_width, use_column_width=False)
|
|
|
63 |
"Your description should form a clear, well-structured, and factual paragraph that avoids bullet points, focusing on creating a seamless narrative."
|
64 |
)
|
65 |
|
66 |
+
# Functions to query the Hugging Face Inference API
|
67 |
+
def query_image_caption(image):
|
68 |
+
# Convert PIL image to bytes
|
69 |
+
buffered = io.BytesIO()
|
70 |
+
image.save(buffered, format="JPEG")
|
71 |
+
image_bytes = buffered.getvalue()
|
72 |
+
|
73 |
+
response = requests.post(API_URL_CAPTION, headers={"Authorization": f"Bearer {huggingface_api_key}"}, data=image_bytes)
|
74 |
+
return response.json()
|
75 |
+
|
76 |
+
def query_llm(prompt):
|
77 |
+
payload = {
|
78 |
+
"inputs": prompt,
|
79 |
+
"parameters": {
|
80 |
+
"max_new_tokens": 500,
|
81 |
+
"return_full_text": False,
|
82 |
+
"do_sample": True,
|
83 |
+
"temperature": 0.7,
|
84 |
+
"top_p": 0.9
|
85 |
+
},
|
86 |
+
"options": {
|
87 |
+
"wait_for_model": True
|
88 |
+
}
|
89 |
+
}
|
90 |
+
|
91 |
+
response = requests.post(API_URL_LLM, headers=headers, json=payload)
|
92 |
+
return response.json()
|
93 |
+
|
94 |
# Check if an image has been uploaded and if the button has been pressed
|
95 |
if uploaded_file is not None and analyze_button:
|
96 |
with st.spinner("Analyzing the image..."):
|
97 |
+
# Get the caption from the image using the image captioning API
|
98 |
+
caption_response = query_image_caption(image)
|
|
|
99 |
|
100 |
+
# Handle potential errors from the API
|
101 |
+
if isinstance(caption_response, dict) and caption_response.get("error"):
|
102 |
+
st.error(f"Error with image captioning model: {caption_response['error']}")
|
103 |
else:
|
104 |
+
image_caption = caption_response[0]['generated_text']
|
105 |
+
|
106 |
+
# Determine which prompt to use based on the complexity of the image
|
107 |
+
if complex_image:
|
108 |
+
prompt_text = complex_image_prompt_text
|
109 |
+
else:
|
110 |
+
prompt_text = (
|
111 |
+
"As an expert in image accessibility and alternative text, succinctly describe the image caption provided in less than 125 characters. "
|
112 |
+
"Provide a brief description using not more than 125 characters that conveys the essential information in three or fewer clear and concise sentences for use as alt text. "
|
113 |
+
"Skip phrases like 'image of' or 'picture of.' "
|
114 |
+
"Your description should form a clear, well-structured, and factual paragraph that avoids bullet points and newlines, focusing on creating a seamless narrative for accessibility purposes."
|
115 |
+
)
|
116 |
+
|
117 |
+
# Include additional details if provided
|
118 |
+
if additional_details:
|
119 |
+
prompt_text += f"\n\nInclude the additional context provided by the user in your description:\n{additional_details}"
|
120 |
+
|
121 |
+
# Create the prompt for the language model
|
122 |
+
full_prompt = f"{prompt_text}\n\nImage Caption: {image_caption}"
|
123 |
+
|
124 |
+
# Use the language model to generate the alt text description
|
125 |
+
llm_response = query_llm(full_prompt)
|
126 |
+
|
127 |
+
# Handle potential errors from the API
|
128 |
+
if isinstance(llm_response, dict) and llm_response.get("error"):
|
129 |
+
st.error(f"Error with language model: {llm_response['error']}")
|
130 |
+
else:
|
131 |
+
generated_text = llm_response[0]['generated_text'].strip()
|
132 |
+
st.markdown("### Generated Alt Text:")
|
133 |
+
st.write(generated_text)
|
134 |
+
|
135 |
+
st.success('Powered by MTSS GPT. AI can make mistakes. Consider checking important information.')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
else:
|
137 |
st.write("Please upload an image and click 'Analyze the Image' to generate alt text.")
|