E_P / rag_utils_unsloth.py
Programmes's picture
Upload 5 files
8ca422c verified
raw
history blame
1.5 kB
import faiss
import pickle
import numpy as np
import torch
import os
from sentence_transformers import SentenceTransformer
from unsloth import FastLanguageModel
def load_faiss_index(index_path="faiss_index/faiss_index.faiss", doc_path="faiss_index/documents.pkl"):
index = faiss.read_index(index_path)
with open(doc_path, "rb") as f:
documents = pickle.load(f)
return index, documents
def get_embedding_model():
return SentenceTransformer("sentence-transformers/multi-qa-MiniLM-L6-cos-v1")
def query_index(question, index, documents, model, k=3):
question_embedding = model.encode([question])
_, indices = index.search(np.array(question_embedding).astype("float32"), k)
results = [documents[i] for i in indices[0]]
return results
def generate_answer(question, context):
model_id = "unsloth/mistral-7b-instruct-v0.1-bnb-4bit"
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_id,
max_seq_length=4096,
dtype="float32", # pour CPU uniquement
load_in_4bit=True,
device_map="auto"
)
tokenizer.pad_token = tokenizer.eos_token
prompt = f"Voici un contexte :\n{context}\n\nQuestion : {question}\nRéponse :"
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True).to(model.device)
outputs = model.generate(**inputs, max_new_tokens=256, pad_token_id=tokenizer.eos_token_id)
return tokenizer.decode(outputs[0], skip_special_tokens=True)