E_P / rag_utils.py
Programmes's picture
Update rag_utils.py
859e59f verified
import faiss
import pickle
import numpy as np
import re
from sentence_transformers import SentenceTransformer
from huggingface_hub import hf_hub_download
from llama_cpp import Llama
def load_faiss_index(index_path="faiss_index/faiss_index.faiss", doc_path="faiss_index/documents.pkl"):
index = faiss.read_index(index_path)
with open(doc_path, "rb") as f:
documents = pickle.load(f)
return index, documents
def get_embedding_model():
return SentenceTransformer("sentence-transformers/multi-qa-MiniLM-L6-cos-v1")
def query_index(question, index, documents, model, k=3):
question_embedding = model.encode([question])
_, indices = index.search(np.array(question_embedding).astype("float32"), k)
return [documents[i] for i in indices[0]]
def nettoyer_context(context):
context = re.sub(r"\[\'(.*?)\'\]", r"\1", context)
context = context.replace("None", "")
return context
def generate_answer(question, context):
model_file = hf_hub_download(
repo_id="TheBloke/Mistral-7B-Instruct-v0.1-GGUF",
filename="mistral-7b-instruct-v0.1.Q4_K_M.gguf"
)
llm = Llama(
model_path=model_file,
n_ctx=2048,
n_threads=6,
verbose=False
)
prompt = f"""Voici des informations sur des établissements et formations :
{context}
Formule ta réponse comme un conseiller d’orientation bienveillant, de manière fluide et naturelle, sans énumérations brutes.
Question : {question}
Réponse :
"""
output = llm(prompt, max_tokens=128, stop=["</s>"])
return output["choices"][0]["text"].strip()