Spaces:
Sleeping
Sleeping
Update rag_utils.py
Browse files- rag_utils.py +13 -15
rag_utils.py
CHANGED
@@ -1,10 +1,9 @@
|
|
1 |
import faiss
|
2 |
import pickle
|
3 |
import numpy as np
|
4 |
-
import torch
|
5 |
import re
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
-
from
|
8 |
|
9 |
def load_faiss_index(index_path="faiss_index/faiss_index.faiss", doc_path="faiss_index/documents.pkl"):
|
10 |
index = faiss.read_index(index_path)
|
@@ -21,28 +20,27 @@ def query_index(question, index, documents, model, k=3):
|
|
21 |
return [documents[i] for i in indices[0]]
|
22 |
|
23 |
def nettoyer_context(context):
|
24 |
-
context = re.sub(r"\[\'(.*?)\'\]", r"\1", context)
|
25 |
-
context = context.replace("None", "")
|
26 |
return context
|
27 |
|
28 |
def generate_answer(question, context):
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
|
32 |
-
tokenizer.pad_token = tokenizer.eos_token
|
33 |
-
model = AutoModelForCausalLM.from_pretrained(model_id)
|
34 |
-
|
35 |
-
prompt = f"""Voici des informations sur des établissements et formations en lien avec les métiers que tu recherches :
|
36 |
|
37 |
{context}
|
38 |
|
39 |
-
Formule ta réponse comme si tu étais un conseiller d’orientation bienveillant, qui s’adresse à un·e élève.
|
40 |
-
Rédige de manière fluide et naturelle, en expliquant les formations ou débouchés possibles, sans utiliser de listes brutes.
|
41 |
|
42 |
Question : {question}
|
43 |
Réponse :
|
44 |
"""
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
1 |
import faiss
|
2 |
import pickle
|
3 |
import numpy as np
|
|
|
4 |
import re
|
5 |
from sentence_transformers import SentenceTransformer
|
6 |
+
from llama_cpp import Llama
|
7 |
|
8 |
def load_faiss_index(index_path="faiss_index/faiss_index.faiss", doc_path="faiss_index/documents.pkl"):
|
9 |
index = faiss.read_index(index_path)
|
|
|
20 |
return [documents[i] for i in indices[0]]
|
21 |
|
22 |
def nettoyer_context(context):
|
23 |
+
context = re.sub(r"\[\'(.*?)\'\]", r"\1", context)
|
24 |
+
context = context.replace("None", "")
|
25 |
return context
|
26 |
|
27 |
def generate_answer(question, context):
|
28 |
+
llm = Llama(
|
29 |
+
model_path="./mistral-7b-instruct-v0.1.Q4_K_M.gguf",
|
30 |
+
n_ctx=2048,
|
31 |
+
n_threads=6,
|
32 |
+
verbose=False
|
33 |
+
)
|
34 |
|
35 |
+
prompt = f""":
|
|
|
|
|
|
|
|
|
36 |
|
37 |
{context}
|
38 |
|
|
|
|
|
39 |
|
40 |
Question : {question}
|
41 |
Réponse :
|
42 |
"""
|
43 |
|
44 |
+
output = llm(prompt, max_tokens=256, stop=["</s>"])
|
45 |
+
return output["choices"][0]["text"].strip()
|
46 |
+
|