Spaces:
Running
Running
Upload 4 files
Browse files- README.md +24 -13
- app.py +17 -0
- rag_utils.py +31 -0
- requirements.txt +3 -2
README.md
CHANGED
@@ -1,13 +1,24 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# Chatbot d'Orientation Scolaire (RAG + Mistral)
|
3 |
+
|
4 |
+
Ce projet est un chatbot basé sur le modèle open-source Mistral 7B, utilisant un index FAISS pour récupérer les documents pertinents à partir d'une base de données, et générer des réponses contextualisées.
|
5 |
+
|
6 |
+
## Lancer l'application
|
7 |
+
|
8 |
+
1. Installe les dépendances :
|
9 |
+
|
10 |
+
```
|
11 |
+
pip install -r requirements.txt
|
12 |
+
```
|
13 |
+
|
14 |
+
2. Lance l'application Streamlit :
|
15 |
+
|
16 |
+
```
|
17 |
+
streamlit run app.py
|
18 |
+
```
|
19 |
+
|
20 |
+
## Structure
|
21 |
+
|
22 |
+
- `app.py` : interface utilisateur
|
23 |
+
- `rag_utils.py` : logique RAG
|
24 |
+
- `faiss_index/` : index FAISS + documents associés
|
app.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import streamlit as st
|
3 |
+
from rag_utils import load_faiss_index, get_embedding_model, query_index, generate_answer
|
4 |
+
|
5 |
+
st.title("🎓 Edu Pilot")
|
6 |
+
|
7 |
+
index, documents = load_faiss_index()
|
8 |
+
model_embed = get_embedding_model()
|
9 |
+
|
10 |
+
user_input = st.text_input("Pose ta question ici :")
|
11 |
+
|
12 |
+
if user_input:
|
13 |
+
top_docs = query_index(user_input, index, documents, model_embed)
|
14 |
+
context = "\n".join(top_docs)
|
15 |
+
response = generate_answer(user_input, context)
|
16 |
+
st.markdown("### ✨ Réponse du chatbot :")
|
17 |
+
st.write(response)
|
rag_utils.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import faiss
|
3 |
+
import pickle
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
6 |
+
import torch
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
def load_faiss_index(index_path="faiss_index/faiss_index.faiss", doc_path="faiss_index/documents.pkl"):
|
10 |
+
index = faiss.read_index(index_path)
|
11 |
+
with open(doc_path, "rb") as f:
|
12 |
+
documents = pickle.load(f)
|
13 |
+
return index, documents
|
14 |
+
|
15 |
+
def get_embedding_model():
|
16 |
+
return SentenceTransformer("all-MiniLM-L6-v2")
|
17 |
+
|
18 |
+
def query_index(question, index, documents, model, k=3):
|
19 |
+
question_embedding = model.encode([question])
|
20 |
+
_, indices = index.search(np.array(question_embedding).astype("float32"), k)
|
21 |
+
results = [documents[i] for i in indices[0]]
|
22 |
+
return results
|
23 |
+
|
24 |
+
def generate_answer(question, context):
|
25 |
+
model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
27 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.float16)
|
28 |
+
prompt = f"Voici un contexte :\n{context}\n\nQuestion : {question}\nRéponse :"
|
29 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
30 |
+
outputs = model.generate(**inputs, max_new_tokens=256)
|
31 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
requirements.txt
CHANGED
@@ -1,5 +1,6 @@
|
|
|
|
1 |
streamlit
|
2 |
faiss-cpu
|
3 |
sentence-transformers
|
4 |
-
|
5 |
-
torch
|
|
|
1 |
+
|
2 |
streamlit
|
3 |
faiss-cpu
|
4 |
sentence-transformers
|
5 |
+
transformers
|
6 |
+
torch
|