import faiss import pickle from sentence_transformers import SentenceTransformer from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline import torch import numpy as np def load_faiss_index(index_path="faiss_index/faiss_index.faiss", doc_path="faiss_index/documents.pkl"): index = faiss.read_index(index_path) with open(doc_path, "rb") as f: documents = pickle.load(f) return index, documents def get_embedding_model(): return SentenceTransformer("all-MiniLM-L6-v2") def query_index(question, index, documents, model, k=3): question_embedding = model.encode([question]) _, indices = index.search(np.array(question_embedding).astype("float32"), k) results = [documents[i] for i in indices[0]] return results def generate_answer(question, context): model_id = "mistralai/Mistral-7B-Instruct-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.float16) prompt = f"Voici un contexte :\n{context}\n\nQuestion : {question}\nRéponse :" inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=256) return tokenizer.decode(outputs[0], skip_special_tokens=True)