import os import faiss import pickle import numpy as np import torch from sentence_transformers import SentenceTransformer from transformers import AutoModelForCausalLM, AutoTokenizer def load_faiss_index(index_path="faiss_index/faiss_index.faiss", doc_path="faiss_index/documents.pkl"): index = faiss.read_index(index_path) with open(doc_path, "rb") as f: documents = pickle.load(f) return index, documents def get_embedding_model(): # Pas besoin de token ici, modèle public print("✅ Chargement de l'encodeur multi-qa-MiniLM-L6-cos-v1") return SentenceTransformer("sentence-transformers/multi-qa-MiniLM-L6-cos-v1") def query_index(question, index, documents, model, k=3): question_embedding = model.encode([question]) _, indices = index.search(np.array(question_embedding).astype("float32"), k) return [documents[i] for i in indices[0]] def generate_answer(question, context): token = os.getenv("HUGGINGFACE") # requis pour Mistral model_id = "mgoogle/flan-t5-base" tokenizer = AutoTokenizer.from_pretrained(model_id, token=token) tokenizer.pad_token = tokenizer.eos_token model = AutoModelForCausalLM.from_pretrained( model_id, token=token, device_map="auto", torch_dtype=torch.float16 ) prompt = f"Voici un contexte :\n{context}\n\nQuestion : {question}\nRéponse :" inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True).to(model.device) outputs = model.generate(**inputs, max_new_tokens=256, pad_token_id=tokenizer.eos_token_id) print("🔍 Contexte utilisé pour la génération :") print(context[:500]) return tokenizer.decode(outputs[0], skip_special_tokens=True)