import faiss import pickle import numpy as np import re from sentence_transformers import SentenceTransformer from huggingface_hub import hf_hub_download from llama_cpp import Llama def load_faiss_index(index_path="faiss_index/faiss_index.faiss", doc_path="faiss_index/documents.pkl"): index = faiss.read_index(index_path) with open(doc_path, "rb") as f: documents = pickle.load(f) return index, documents def get_embedding_model(): return SentenceTransformer("sentence-transformers/multi-qa-MiniLM-L6-cos-v1") def query_index(question, index, documents, model, k=3): question_embedding = model.encode([question]) _, indices = index.search(np.array(question_embedding).astype("float32"), k) return [documents[i] for i in indices[0]] def nettoyer_context(context): context = re.sub(r"\[\'(.*?)\'\]", r"\1", context) context = context.replace("None", "") return context def generate_answer(question, context): model_file = hf_hub_download( repo_id="TheBloke/Mistral-7B-Instruct-v0.1-GGUF", filename="mistral-7b-instruct-v0.1.Q4_K_M.gguf" ) llm = Llama( model_path=model_file, n_ctx=2048, n_threads=6, verbose=False ) prompt = f"""Voici des informations sur des établissements et formations : {context} Formule ta réponse comme un conseiller d’orientation bienveillant, de manière fluide et naturelle, sans énumérations brutes. Question : {question} Réponse : """ output = llm(prompt, max_tokens=128, stop=[""]) return output["choices"][0]["text"].strip()