import gradio as gr from huggingface_hub import InferenceClient import fitz # PyMuPDF client = InferenceClient("opennyaiorg/Aalap-Mistral-7B-v0.1-bf16") def extract_text_from_pdf(pdf_file): document = fitz.open(pdf_file.name) text = "" for page_num in range(len(document)): page = document.load_page(page_num) text += page.get_text() return text def summarize_pdf(pdf_file, max_tokens, temperature, top_p): text = extract_text_from_pdf(pdf_file) response = "" messages = [{"role": "user", "content": f"Summarize the following text: {text}"}] for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response def ner_pdf(pdf_file, max_tokens, temperature, top_p): text = extract_text_from_pdf(pdf_file) response = "" messages = [{"role": "user", "content": f"Extract named entities from the following text: {text}"}] for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response def qa_pdf(pdf_file, question, max_tokens, temperature, top_p): text = extract_text_from_pdf(pdf_file) response = "" messages = [{"role": "user", "content": f"Answer the question '{question}' based on the following text: {text}"}] for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response with gr.Blocks() as demo: gr.Markdown("# NLP Tasks on PDF Documents") with gr.Tab("Summarization"): pdf_file = gr.File(label="Upload PDF") summarize_button = gr.Button("Summarize") summary_output = gr.Textbox(label="Summary") summarize_button.click(summarize_pdf, inputs=[pdf_file, gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")], outputs=summary_output) with gr.Tab("Named Entity Recognition (NER)"): pdf_file = gr.File(label="Upload PDF") ner_button = gr.Button("Extract Entities") ner_output = gr.JSON(label="Entities") ner_button.click(ner_pdf, inputs=[pdf_file, gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")], outputs=ner_output) with gr.Tab("Question Answering"): pdf_file = gr.File(label="Upload PDF") question_input = gr.Textbox(label="Enter your question") qa_button = gr.Button("Get Answer") qa_output = gr.Textbox(label="Answer") qa_button.click(qa_pdf, inputs=[pdf_file, question_input, gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")], outputs=qa_output) if __name__ == "__main__": demo.launch()