Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
|
2 |
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
3 |
from langchain.vectorstores import FAISS
|
4 |
from langchain.text_splitter import CharacterTextSplitter
|
@@ -78,13 +78,14 @@ def main():
|
|
78 |
folder_path = './PDFs'
|
79 |
pdf_text = get_pdf_text(folder_path)
|
80 |
text_chunks = get_text_chunks(pdf_text)
|
81 |
-
|
|
|
82 |
retriever=get_vectorstore().as_retriever()
|
83 |
retrieved_docs=retriever.invoke(
|
84 |
"Was macht man im Katastrophenfall?"
|
85 |
)
|
86 |
-
|
87 |
-
|
88 |
|
89 |
#vectorstore_DB=get_vectorstore() # bei Abfrage durch Chatbot
|
90 |
#print(get_vectorstore().similarity_search_with_score("stelle")) # zeigt an ob Vektordatenbank gefüllt ist
|
|
|
1 |
+
import streamlit as st
|
2 |
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
3 |
from langchain.vectorstores import FAISS
|
4 |
from langchain.text_splitter import CharacterTextSplitter
|
|
|
78 |
folder_path = './PDFs'
|
79 |
pdf_text = get_pdf_text(folder_path)
|
80 |
text_chunks = get_text_chunks(pdf_text)
|
81 |
+
create_vectorstore_and_store(text_chunks)
|
82 |
+
|
83 |
retriever=get_vectorstore().as_retriever()
|
84 |
retrieved_docs=retriever.invoke(
|
85 |
"Was macht man im Katastrophenfall?"
|
86 |
)
|
87 |
+
st.text(retrieved_docs[0].page_content)
|
88 |
+
# bei incoming pdf
|
89 |
|
90 |
#vectorstore_DB=get_vectorstore() # bei Abfrage durch Chatbot
|
91 |
#print(get_vectorstore().similarity_search_with_score("stelle")) # zeigt an ob Vektordatenbank gefüllt ist
|