Model created
Browse files
app.py
CHANGED
@@ -1,15 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
iface = gr.Interface(fn =
|
10 |
inputs = "text",
|
11 |
outputs = ["text"],
|
12 |
-
title = "
|
13 |
description = "Ciao!!!")
|
14 |
|
15 |
iface.launch(inline = False)
|
|
|
1 |
+
#import gradio as gr
|
2 |
+
#from transformers import pipeline
|
3 |
+
|
4 |
+
#sentiment = pipeline("sentiment-analysis")
|
5 |
+
|
6 |
+
#def get_sentiment(input_text):
|
7 |
+
# return sentiment(input_text)
|
8 |
+
|
9 |
+
#iface = gr.Interface(fn = get_sentiment,
|
10 |
+
# inputs = "text",
|
11 |
+
# outputs = ["text"],
|
12 |
+
# title = "Sentiment Analysis",
|
13 |
+
# description = "Ciao!!!")
|
14 |
+
#
|
15 |
+
#iface.launch(inline = False)
|
16 |
+
|
17 |
import gradio as gr
|
18 |
+
from typing import *
|
19 |
+
import torch
|
20 |
+
import transformers
|
21 |
+
|
22 |
+
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
|
23 |
+
|
24 |
+
tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
|
25 |
+
model = LlamaForCausalLM.from_pretrained(
|
26 |
+
"decapoda-research/llama-7b-hf",
|
27 |
+
load_in_8bit=True,
|
28 |
+
device_map="auto",
|
29 |
+
)
|
30 |
+
|
31 |
+
def evaluate(question):
|
32 |
+
prompt = f"The conversation between human and AI assistant.\n[|Human|] {question}.\n[|AI|] "
|
33 |
+
inputs = tokenizer(question, return_tensors="pt")
|
34 |
+
input_ids = inputs["input_ids"].cuda()
|
35 |
+
generation_output = model.generate(
|
36 |
+
input_ids=input_ids,
|
37 |
+
generation_config=GenerationConfig(
|
38 |
+
temperature=1,
|
39 |
+
top_p=0.95,
|
40 |
+
num_beams=4,
|
41 |
+
max_context_length_tokens=2048,
|
42 |
+
),
|
43 |
+
return_dict_in_generate=True,
|
44 |
+
output_scores=True,
|
45 |
+
max_new_tokens=512
|
46 |
+
)
|
47 |
+
output = tokenizer.decode(generation_output.sequences[0]).split("[|AI|]")[1]
|
48 |
+
return output
|
49 |
+
|
50 |
+
|
51 |
+
def generate_prompt_with_history(text:str, history: str, tokenizer, max_length=2048):
|
52 |
+
history = ["\n[|Human|]{}\n[|AI|]{}".format(x[0],x[1]) for x in history]
|
53 |
+
history.append("\n[|Human|]{}\n[|AI|]".format(text))
|
54 |
+
history_text = ""
|
55 |
+
|
56 |
+
for x in history[::-1]:
|
57 |
+
if tokenizer(history_text + x, return_tensors="pt")['input_ids'].size(-1) <= max_length:
|
58 |
+
history_text = x + history_text
|
59 |
+
flag = True
|
60 |
+
if flag:
|
61 |
+
return history_text, tokenizer(history_text, return_tensors="pt")
|
62 |
+
else:
|
63 |
+
return False
|
64 |
+
|
65 |
+
|
66 |
+
def is_stop_word_or_prefix(s: str, stop_words: list) -> bool:
|
67 |
+
for stop_word in stop_words:
|
68 |
+
if s.endswith(stop_word):
|
69 |
+
return True
|
70 |
+
for i in range(1, len(stop_word)):
|
71 |
+
if s.endswith(stop_word[:i]):
|
72 |
+
return True
|
73 |
+
return False
|
74 |
+
|
75 |
+
|
76 |
+
def greedy_search(input_ids: torch.Tensor,
|
77 |
+
model: torch.nn.Module,
|
78 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
79 |
+
stop_words: list,
|
80 |
+
max_length: int,
|
81 |
+
temperature: float = 1.0,
|
82 |
+
top_p: float = 1.0,
|
83 |
+
top_k: int = 25) -> Iterator[str]:
|
84 |
+
generated_tokens = []
|
85 |
+
past_key_values = None
|
86 |
+
current_length = 1
|
87 |
+
for i in range(max_length):
|
88 |
+
with torch.no_grad():
|
89 |
+
if past_key_values is None:
|
90 |
+
outputs = model(input_ids)
|
91 |
+
else:
|
92 |
+
outputs = model(input_ids[:, -1:], past_key_values=past_key_values)
|
93 |
+
logits = outputs.logits[:, -1, :]
|
94 |
+
past_key_values = outputs.past_key_values
|
95 |
+
|
96 |
+
logits /= temperature
|
97 |
+
|
98 |
+
probs = torch.softmax(logits, dim=-1)
|
99 |
+
|
100 |
+
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
|
101 |
+
probs_sum = torch.cumsum(probs_sort, dim=-1)
|
102 |
+
mask = probs_sum - probs_sort > top_p
|
103 |
+
probs_sort[mask] = 0.0
|
104 |
+
|
105 |
+
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
|
106 |
+
next_token = torch.multinomial(probs_sort, num_samples=1)
|
107 |
+
next_token = torch.gather(probs_idx, -1, next_token)
|
108 |
+
|
109 |
+
input_ids = torch.cat((input_ids, next_token), dim=-1)
|
110 |
+
|
111 |
+
generated_tokens.append(next_token[0].item())
|
112 |
+
text = tokenizer.decode(generated_tokens)
|
113 |
+
|
114 |
+
yield text
|
115 |
+
if any([x in text for x in stop_words]):
|
116 |
+
return
|
117 |
+
@torch.no_grad()
|
118 |
+
|
119 |
+
|
120 |
+
def predict(text:str,
|
121 |
+
chatbot,
|
122 |
+
history:str = "",
|
123 |
+
top_p:float = 0.95,
|
124 |
+
temperature:float = 1.0,
|
125 |
+
max_length_tokens:int = 512,
|
126 |
+
max_context_length_tokens:int = 2048):
|
127 |
+
if text=="":
|
128 |
+
return ""
|
129 |
+
|
130 |
+
inputs = generate_prompt_with_history(text, history, tokenizer, max_length=max_context_length_tokens)
|
131 |
+
prompt,inputs=inputs
|
132 |
+
begin_length = len(prompt)
|
133 |
+
|
134 |
+
input_ids = inputs["input_ids"].to(chatbot.device)
|
135 |
+
output = []
|
136 |
+
|
137 |
+
for x in greedy_search(input_ids,model,tokenizer,stop_words=["[|Human|]", "[|AI|]"],max_length=max_length_tokens,temperature=temperature,top_p=top_p):
|
138 |
+
if is_stop_word_or_prefix(x,["[|Human|]", "[|AI|]"]) is False:
|
139 |
+
if "[|Human|]" in x:
|
140 |
+
x = x[:x.index("[|Human|]")].strip()
|
141 |
+
elif "[| Human |]" in x:
|
142 |
+
x = x[:x.index("[| Human |]")].strip()
|
143 |
+
if "[|AI|]" in x:
|
144 |
+
x = x[:x.index("[|AI|]")].strip()
|
145 |
+
x = x.strip(" ")
|
146 |
+
output.append(x)
|
147 |
+
return output[-1]
|
148 |
+
|
149 |
+
#text = "Can you give a more formal definition?"
|
150 |
+
#print(predict(text, model))
|
151 |
+
|
152 |
+
#sentiment = pipeline("sentiment-analysis")
|
153 |
|
154 |
+
#def get_sentiment(input_text):
|
155 |
+
# return sentiment(input_text)
|
156 |
|
157 |
+
#iface = gr.Interface(fn = get_sentiment,
|
158 |
+
# inputs = "text",
|
159 |
+
# outputs = ["text"],
|
160 |
+
# title = "Sentiment Analysis",
|
161 |
+
# description = "Ciao!!!")
|
162 |
+
#
|
163 |
+
#iface.launch(inline = False)
|
164 |
|
165 |
+
iface = gr.Interface(fn = predict,
|
166 |
inputs = "text",
|
167 |
outputs = ["text"],
|
168 |
+
title = "Learn with ChadGPT",
|
169 |
description = "Ciao!!!")
|
170 |
|
171 |
iface.launch(inline = False)
|