Spaces:
Running
on
T4
Running
on
T4
File size: 22,614 Bytes
8c639ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 |
"""
https://github.com/ProteinDesignLab/protpardelle
License: MIT
Author: Alex Chu
Neural network modules. Many of these are adapted from open source modules.
"""
from typing import List, Sequence, Optional
from einops import rearrange, reduce, repeat
from einops.layers.torch import Rearrange
import numpy as np
from rotary_embedding_torch import RotaryEmbedding
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import AutoTokenizer, EsmModel
from core import protein_mpnn
from core import residue_constants
from core import utils
########################################
# Adapted from https://github.com/ermongroup/ddim
def downsample(x):
return nn.functional.avg_pool2d(x, 2, 2, ceil_mode=True)
def upsample_coords(x, shape):
new_l, new_w = shape
return nn.functional.interpolate(x, size=(new_l, new_w), mode="nearest")
########################################
# Adapted from https://github.com/aqlaboratory/openfold
def permute_final_dims(tensor: torch.Tensor, inds: List[int]):
zero_index = -1 * len(inds)
first_inds = list(range(len(tensor.shape[:zero_index])))
return tensor.contiguous().permute(first_inds + [zero_index + i for i in inds])
def lddt(
all_atom_pred_pos: torch.Tensor,
all_atom_positions: torch.Tensor,
all_atom_mask: torch.Tensor,
cutoff: float = 15.0,
eps: float = 1e-10,
per_residue: bool = True,
) -> torch.Tensor:
n = all_atom_mask.shape[-2]
dmat_true = torch.sqrt(
eps
+ torch.sum(
(all_atom_positions[..., None, :] - all_atom_positions[..., None, :, :])
** 2,
dim=-1,
)
)
dmat_pred = torch.sqrt(
eps
+ torch.sum(
(all_atom_pred_pos[..., None, :] - all_atom_pred_pos[..., None, :, :]) ** 2,
dim=-1,
)
)
dists_to_score = (
(dmat_true < cutoff)
* all_atom_mask
* permute_final_dims(all_atom_mask, (1, 0))
* (1.0 - torch.eye(n, device=all_atom_mask.device))
)
dist_l1 = torch.abs(dmat_true - dmat_pred)
score = (
(dist_l1 < 0.5).type(dist_l1.dtype)
+ (dist_l1 < 1.0).type(dist_l1.dtype)
+ (dist_l1 < 2.0).type(dist_l1.dtype)
+ (dist_l1 < 4.0).type(dist_l1.dtype)
)
score = score * 0.25
dims = (-1,) if per_residue else (-2, -1)
norm = 1.0 / (eps + torch.sum(dists_to_score, dim=dims))
score = norm * (eps + torch.sum(dists_to_score * score, dim=dims))
return score
class RelativePositionalEncoding(nn.Module):
def __init__(self, attn_dim=8, max_rel_idx=32):
super().__init__()
self.max_rel_idx = max_rel_idx
self.n_rel_pos = 2 * self.max_rel_idx + 1
self.linear = nn.Linear(self.n_rel_pos, attn_dim)
def forward(self, residue_index):
d_ij = residue_index[..., None] - residue_index[..., None, :]
v_bins = torch.arange(self.n_rel_pos).to(d_ij.device) - self.max_rel_idx
idxs = (d_ij[..., None] - v_bins[None, None]).abs().argmin(-1)
p_ij = nn.functional.one_hot(idxs, num_classes=self.n_rel_pos)
embeddings = self.linear(p_ij.float())
return embeddings
########################################
# Adapted from https://github.com/NVlabs/edm
class Noise_Embedding(nn.Module):
def __init__(self, num_channels, max_positions=10000, endpoint=False):
super().__init__()
self.num_channels = num_channels
self.max_positions = max_positions
self.endpoint = endpoint
def forward(self, x):
freqs = torch.arange(
start=0, end=self.num_channels // 2, dtype=torch.float32, device=x.device
)
freqs = freqs / (self.num_channels // 2 - (1 if self.endpoint else 0))
freqs = (1 / self.max_positions) ** freqs
x = x.outer(freqs.to(x.dtype))
x = torch.cat([x.cos(), x.sin()], dim=1)
return x
########################################
# Adapted from github.com/lucidrains
# https://github.com/lucidrains/denoising-diffusion-pytorch
# https://github.com/lucidrains/recurrent-interface-network-pytorch
def exists(x):
return x is not None
def default(val, d):
if exists(val):
return val
return d() if callable(d) else d
def posemb_sincos_1d(patches, temperature=10000, residue_index=None):
_, n, dim, device, dtype = *patches.shape, patches.device, patches.dtype
n = torch.arange(n, device=device) if residue_index is None else residue_index
assert (dim % 2) == 0, "feature dimension must be multiple of 2 for sincos emb"
omega = torch.arange(dim // 2, device=device) / (dim // 2 - 1)
omega = 1.0 / (temperature**omega)
n = n[..., None] * omega
pe = torch.cat((n.sin(), n.cos()), dim=-1)
return pe.type(dtype)
class LayerNorm(nn.Module):
def __init__(self, dim):
super().__init__()
self.gamma = nn.Parameter(torch.ones(dim))
self.register_buffer("beta", torch.zeros(dim))
def forward(self, x):
return F.layer_norm(x, x.shape[-1:], self.gamma, self.beta)
class NoiseConditioningBlock(nn.Module):
def __init__(self, n_in_channel, n_out_channel):
super().__init__()
self.block = nn.Sequential(
Noise_Embedding(n_in_channel),
nn.Linear(n_in_channel, n_out_channel),
nn.SiLU(),
nn.Linear(n_out_channel, n_out_channel),
Rearrange("b d -> b 1 d"),
)
def forward(self, noise_level):
return self.block(noise_level)
class TimeCondResnetBlock(nn.Module):
def __init__(
self, nic, noc, cond_nc, conv_layer=nn.Conv2d, dropout=0.1, n_norm_in_groups=4
):
super().__init__()
self.block1 = nn.Sequential(
nn.GroupNorm(num_groups=nic // n_norm_in_groups, num_channels=nic),
nn.SiLU(),
conv_layer(nic, noc, 3, 1, 1),
)
self.cond_proj = nn.Linear(cond_nc, noc * 2)
self.mid_norm = nn.GroupNorm(num_groups=noc // 4, num_channels=noc)
self.dropout = dropout if dropout is None else nn.Dropout(dropout)
self.block2 = nn.Sequential(
nn.GroupNorm(num_groups=noc // 4, num_channels=noc),
nn.SiLU(),
conv_layer(noc, noc, 3, 1, 1),
)
self.mismatch = False
if nic != noc:
self.mismatch = True
self.conv_match = conv_layer(nic, noc, 1, 1, 0)
def forward(self, x, time=None):
h = self.block1(x)
if time is not None:
h = self.mid_norm(h)
scale, shift = self.cond_proj(time).chunk(2, dim=-1)
h = (h * (utils.expand(scale, h) + 1)) + utils.expand(shift, h)
if self.dropout is not None:
h = self.dropout(h)
h = self.block2(h)
if self.mismatch:
x = self.conv_match(x)
return x + h
class TimeCondAttention(nn.Module):
def __init__(
self,
dim,
dim_context=None,
heads=4,
dim_head=32,
norm=False,
norm_context=False,
time_cond_dim=None,
attn_bias_dim=None,
rotary_embedding_module=None,
):
super().__init__()
hidden_dim = dim_head * heads
dim_context = default(dim_context, dim)
self.time_cond = None
if exists(time_cond_dim):
self.time_cond = nn.Sequential(nn.SiLU(), nn.Linear(time_cond_dim, dim * 2))
nn.init.zeros_(self.time_cond[-1].weight)
nn.init.zeros_(self.time_cond[-1].bias)
self.scale = dim_head**-0.5
self.heads = heads
self.norm = LayerNorm(dim) if norm else nn.Identity()
self.norm_context = LayerNorm(dim_context) if norm_context else nn.Identity()
self.attn_bias_proj = None
if attn_bias_dim is not None:
self.attn_bias_proj = nn.Sequential(
Rearrange("b a i j -> b i j a"),
nn.Linear(attn_bias_dim, heads),
Rearrange("b i j a -> b a i j"),
)
self.to_q = nn.Linear(dim, hidden_dim, bias=False)
self.to_kv = nn.Linear(dim_context, hidden_dim * 2, bias=False)
self.to_out = nn.Linear(hidden_dim, dim, bias=False)
nn.init.zeros_(self.to_out.weight)
self.use_rope = False
if rotary_embedding_module is not None:
self.use_rope = True
self.rope = rotary_embedding_module
def forward(self, x, context=None, time=None, attn_bias=None, seq_mask=None):
# attn_bias is b, c, i, j
h = self.heads
has_context = exists(context)
context = default(context, x)
if x.shape[-1] != self.norm.gamma.shape[-1]:
print(context.shape, x.shape, self.norm.gamma.shape)
x = self.norm(x)
if exists(time):
scale, shift = self.time_cond(time).chunk(2, dim=-1)
x = (x * (scale + 1)) + shift
if has_context:
context = self.norm_context(context)
if seq_mask is not None:
x = x * seq_mask[..., None]
qkv = (self.to_q(x), *self.to_kv(context).chunk(2, dim=-1))
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), qkv)
q = q * self.scale
if self.use_rope:
q = self.rope.rotate_queries_or_keys(q)
k = self.rope.rotate_queries_or_keys(k)
sim = torch.einsum("b h i d, b h j d -> b h i j", q, k)
if attn_bias is not None:
if self.attn_bias_proj is not None:
attn_bias = self.attn_bias_proj(attn_bias)
sim += attn_bias
if seq_mask is not None:
attn_mask = torch.einsum("b i, b j -> b i j", seq_mask, seq_mask)[:, None]
sim -= (1 - attn_mask) * 1e6
attn = sim.softmax(dim=-1)
out = torch.einsum("b h i j, b h j d -> b h i d", attn, v)
out = rearrange(out, "b h n d -> b n (h d)")
out = self.to_out(out)
if seq_mask is not None:
out = out * seq_mask[..., None]
return out
class TimeCondFeedForward(nn.Module):
def __init__(self, dim, mult=4, dim_out=None, time_cond_dim=None, dropout=0.1):
super().__init__()
if dim_out is None:
dim_out = dim
self.norm = LayerNorm(dim)
self.time_cond = None
self.dropout = None
inner_dim = int(dim * mult)
if exists(time_cond_dim):
self.time_cond = nn.Sequential(
nn.SiLU(),
nn.Linear(time_cond_dim, inner_dim * 2),
)
nn.init.zeros_(self.time_cond[-1].weight)
nn.init.zeros_(self.time_cond[-1].bias)
self.linear_in = nn.Linear(dim, inner_dim)
self.nonlinearity = nn.SiLU()
if dropout is not None:
self.dropout = nn.Dropout(dropout)
self.linear_out = nn.Linear(inner_dim, dim_out)
nn.init.zeros_(self.linear_out.weight)
nn.init.zeros_(self.linear_out.bias)
def forward(self, x, time=None):
x = self.norm(x)
x = self.linear_in(x)
x = self.nonlinearity(x)
if exists(time):
scale, shift = self.time_cond(time).chunk(2, dim=-1)
x = (x * (scale + 1)) + shift
if exists(self.dropout):
x = self.dropout(x)
return self.linear_out(x)
class TimeCondTransformer(nn.Module):
def __init__(
self,
dim,
depth,
heads,
dim_head,
time_cond_dim,
attn_bias_dim=None,
mlp_inner_dim_mult=4,
position_embedding_type: str = "rotary",
):
super().__init__()
self.rope = None
self.pos_emb_type = position_embedding_type
if position_embedding_type == "rotary":
self.rope = RotaryEmbedding(dim=32)
elif position_embedding_type == "relative":
self.relpos = nn.Sequential(
RelativePositionalEncoding(attn_dim=heads),
Rearrange("b i j d -> b d i j"),
)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(
nn.ModuleList(
[
TimeCondAttention(
dim,
heads=heads,
dim_head=dim_head,
norm=True,
time_cond_dim=time_cond_dim,
attn_bias_dim=attn_bias_dim,
rotary_embedding_module=self.rope,
),
TimeCondFeedForward(
dim, mlp_inner_dim_mult, time_cond_dim=time_cond_dim
),
]
)
)
def forward(
self,
x,
time=None,
attn_bias=None,
context=None,
seq_mask=None,
residue_index=None,
):
if self.pos_emb_type == "absolute":
pos_emb = posemb_sincos_1d(x)
x = x + pos_emb
elif self.pos_emb_type == "absolute_residx":
assert residue_index is not None
pos_emb = posemb_sincos_1d(x, residue_index=residue_index)
x = x + pos_emb
elif self.pos_emb_type == "relative":
assert residue_index is not None
pos_emb = self.relpos(residue_index)
attn_bias = pos_emb if attn_bias is None else attn_bias + pos_emb
if seq_mask is not None:
x = x * seq_mask[..., None]
for i, (attn, ff) in enumerate(self.layers):
x = x + attn(
x, context=context, time=time, attn_bias=attn_bias, seq_mask=seq_mask
)
x = x + ff(x, time=time)
if seq_mask is not None:
x = x * seq_mask[..., None]
return x
class TimeCondUViT(nn.Module):
def __init__(
self,
*,
seq_len: int,
dim: int,
patch_size: int = 1,
depth: int = 6,
heads: int = 8,
dim_head: int = 32,
n_filt_per_layer: List[int] = [],
n_blocks_per_layer: int = 2,
n_atoms: int = 37,
channels_per_atom: int = 6,
attn_bias_dim: int = None,
time_cond_dim: int = None,
conv_skip_connection: bool = False,
position_embedding_type: str = "rotary",
):
super().__init__()
# Initialize configuration params
if time_cond_dim is None:
time_cond_dim = dim * 4
self.position_embedding_type = position_embedding_type
channels = channels_per_atom
self.n_conv_layers = n_conv_layers = len(n_filt_per_layer)
if n_conv_layers > 0:
post_conv_filt = n_filt_per_layer[-1]
self.conv_skip_connection = conv_skip_connection and n_conv_layers == 1
transformer_seq_len = seq_len // (2**n_conv_layers)
assert transformer_seq_len % patch_size == 0
num_patches = transformer_seq_len // patch_size
dim_a = post_conv_atom_dim = max(1, n_atoms // (2 ** (n_conv_layers - 1)))
if n_conv_layers == 0:
patch_dim = patch_size * n_atoms * channels_per_atom
patch_dim_out = patch_size * n_atoms * 3
dim_a = n_atoms
elif conv_skip_connection and n_conv_layers == 1:
patch_dim = patch_size * (channels + post_conv_filt) * post_conv_atom_dim
patch_dim_out = patch_size * post_conv_filt * post_conv_atom_dim
elif n_conv_layers > 0:
patch_dim = patch_dim_out = patch_size * post_conv_filt * post_conv_atom_dim
# Make downsampling conv
# Downsamples n-1 times where n is n_conv_layers
down_conv = []
block_in = channels
for i, nf in enumerate(n_filt_per_layer):
block_out = nf
layer = []
for j in range(n_blocks_per_layer):
n_groups = 2 if i == 0 and j == 0 else 4
layer.append(
TimeCondResnetBlock(
block_in, block_out, time_cond_dim, n_norm_in_groups=n_groups
)
)
block_in = block_out
down_conv.append(nn.ModuleList(layer))
self.down_conv = nn.ModuleList(down_conv)
# Make transformer
self.to_patch_embedding = nn.Sequential(
Rearrange("b c (n p) a -> b n (p c a)", p=patch_size),
nn.Linear(patch_dim, dim),
LayerNorm(dim),
)
self.transformer = TimeCondTransformer(
dim,
depth,
heads,
dim_head,
time_cond_dim,
attn_bias_dim=attn_bias_dim,
position_embedding_type=position_embedding_type,
)
self.from_patch = nn.Sequential(
LayerNorm(dim),
nn.Linear(dim, patch_dim_out),
Rearrange("b n (p c a) -> b c (n p) a", p=patch_size, a=dim_a),
)
nn.init.zeros_(self.from_patch[-2].weight)
nn.init.zeros_(self.from_patch[-2].bias)
# Make upsampling conv
up_conv = []
for i, nf in enumerate(reversed(n_filt_per_layer)):
skip_in = nf
block_out = nf
layer = []
for j in range(n_blocks_per_layer):
layer.append(
TimeCondResnetBlock(block_in + skip_in, block_out, time_cond_dim)
)
block_in = block_out
up_conv.append(nn.ModuleList(layer))
self.up_conv = nn.ModuleList(up_conv)
# Conv out
if n_conv_layers > 0:
self.conv_out = nn.Sequential(
nn.GroupNorm(num_groups=block_out // 4, num_channels=block_out),
nn.SiLU(),
nn.Conv2d(block_out, channels // 2, 3, 1, 1),
)
def forward(
self, coords, time_cond, pair_bias=None, seq_mask=None, residue_index=None
):
if self.n_conv_layers > 0: # pad up to even dims
coords = F.pad(coords, (0, 0, 0, 0, 0, 1, 0, 0))
x = rearr_coords = rearrange(coords, "b n a c -> b c n a")
hiddens = []
for i, layer in enumerate(self.down_conv):
for block in layer:
x = block(x, time=time_cond)
hiddens.append(x)
if i != self.n_conv_layers - 1:
x = downsample(x)
if self.conv_skip_connection:
x = torch.cat([x, rearr_coords], 1)
x = self.to_patch_embedding(x)
# if self.position_embedding_type == 'absolute':
# pos_emb = posemb_sincos_1d(x)
# x = x + pos_emb
if seq_mask is not None and x.shape[1] == seq_mask.shape[1]:
x *= seq_mask[..., None]
x = self.transformer(
x,
time=time_cond,
attn_bias=pair_bias,
seq_mask=seq_mask,
residue_index=residue_index,
)
x = self.from_patch(x)
for i, layer in enumerate(self.up_conv):
for block in layer:
x = torch.cat([x, hiddens.pop()], 1)
x = block(x, time=time_cond)
if i != self.n_conv_layers - 1:
x = upsample_coords(x, hiddens[-1].shape[2:])
if self.n_conv_layers > 0:
x = self.conv_out(x)
x = x[..., :-1, :] # drop even-dims padding
x = rearrange(x, "b c n a -> b n a c")
return x
########################################
class LinearWarmupCosineDecay(torch.optim.lr_scheduler._LRScheduler):
def __init__(
self,
optimizer,
max_lr,
warmup_steps=1000,
decay_steps=int(1e6),
min_lr=1e-6,
**kwargs,
):
self.max_lr = max_lr
self.min_lr = min_lr
self.warmup_steps = warmup_steps
self.decay_steps = decay_steps
self.total_steps = warmup_steps + decay_steps
super(LinearWarmupCosineDecay, self).__init__(optimizer, **kwargs)
def get_lr(self):
# TODO double check for off-by-one errors
if self.last_epoch < self.warmup_steps:
curr_lr = self.last_epoch / self.warmup_steps * self.max_lr
return [curr_lr for group in self.optimizer.param_groups]
elif self.last_epoch < self.total_steps:
time = (self.last_epoch - self.warmup_steps) / self.decay_steps * np.pi
curr_lr = self.min_lr + (self.max_lr - self.min_lr) * 0.5 * (
1 + np.cos(time)
)
return [curr_lr for group in self.optimizer.param_groups]
else:
return [self.min_lr for group in self.optimizer.param_groups]
class NoiseConditionalProteinMPNN(nn.Module):
def __init__(
self,
n_channel=128,
n_layers=3,
n_neighbors=32,
time_cond_dim=None,
vocab_size=21,
input_S_is_embeddings=False,
):
super().__init__()
self.n_channel = n_channel
self.n_layers = n_layers
self.n_neighbors = n_neighbors
self.time_cond_dim = time_cond_dim
self.vocab_size = vocab_size
self.bb_idxs_if_atom37 = [
residue_constants.atom_order[a] for a in ["N", "CA", "C", "O"]
]
self.mpnn = protein_mpnn.ProteinMPNN(
num_letters=vocab_size,
node_features=n_channel,
edge_features=n_channel,
hidden_dim=n_channel,
num_encoder_layers=n_layers,
num_decoder_layers=n_layers,
vocab=vocab_size,
k_neighbors=n_neighbors,
augment_eps=0.0,
dropout=0.1,
ca_only=False,
time_cond_dim=time_cond_dim,
input_S_is_embeddings=input_S_is_embeddings,
)
def forward(
self, denoised_coords, noisy_aatype, seq_mask, residue_index, time_cond
):
if denoised_coords.shape[-2] == 37:
denoised_coords = denoised_coords[:, :, self.bb_idxs_if_atom37]
node_embs, encoder_embs = self.mpnn(
X=denoised_coords,
S=noisy_aatype,
mask=seq_mask,
chain_M=seq_mask,
residue_idx=residue_index,
chain_encoding_all=seq_mask,
randn=None,
use_input_decoding_order=False,
decoding_order=None,
causal_mask=False,
time_cond=time_cond,
return_node_embs=True,
)
return node_embs, encoder_embs
|