Spaces:
Sleeping
Sleeping
File size: 29,312 Bytes
00aa807 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
import argparse
import os.path
def main(args):
import json, time, os, sys, glob
import shutil
import warnings
import numpy as np
import torch
from torch import optim
from torch.utils.data import DataLoader
from torch.utils.data.dataset import random_split, Subset
import copy
import torch.nn as nn
import torch.nn.functional as F
import random
import os.path
import subprocess
from protein_mpnn_utils import loss_nll, loss_smoothed, gather_edges, gather_nodes, gather_nodes_t, cat_neighbors_nodes, _scores, _S_to_seq, tied_featurize, parse_PDB, parse_fasta
from protein_mpnn_utils import StructureDataset, StructureDatasetPDB, ProteinMPNN
if args.seed:
seed=args.seed
else:
seed=int(np.random.randint(0, high=999, size=1, dtype=int)[0])
torch.manual_seed(seed)
random.seed(seed)
np.random.seed(seed)
hidden_dim = 128
num_layers = 3
if args.path_to_model_weights:
model_folder_path = args.path_to_model_weights
if model_folder_path[-1] != '/':
model_folder_path = model_folder_path + '/'
else:
file_path = os.path.realpath(__file__)
k = file_path.rfind("/")
if args.ca_only:
print("Using CA-ProteinMPNN!")
model_folder_path = file_path[:k] + '/ca_model_weights/'
if args.use_soluble_model:
print("WARNING: CA-SolubleMPNN is not available yet")
sys.exit()
else:
if args.use_soluble_model:
print("Using ProteinMPNN trained on soluble proteins only!")
model_folder_path = file_path[:k] + '/soluble_model_weights/'
else:
model_folder_path = file_path[:k] + '/vanilla_model_weights/'
checkpoint_path = model_folder_path + f'{args.model_name}.pt'
folder_for_outputs = args.out_folder
NUM_BATCHES = args.num_seq_per_target//args.batch_size
BATCH_COPIES = args.batch_size
temperatures = [float(item) for item in args.sampling_temp.split()]
omit_AAs_list = args.omit_AAs
alphabet = 'ACDEFGHIKLMNPQRSTVWYX'
alphabet_dict = dict(zip(alphabet, range(21)))
print_all = args.suppress_print == 0
omit_AAs_np = np.array([AA in omit_AAs_list for AA in alphabet]).astype(np.float32)
device = torch.device("cuda:0" if (torch.cuda.is_available()) else "cpu")
if os.path.isfile(args.chain_id_jsonl):
with open(args.chain_id_jsonl, 'r') as json_file:
json_list = list(json_file)
for json_str in json_list:
chain_id_dict = json.loads(json_str)
else:
chain_id_dict = None
if print_all:
print(40*'-')
print('chain_id_jsonl is NOT loaded')
if os.path.isfile(args.fixed_positions_jsonl):
with open(args.fixed_positions_jsonl, 'r') as json_file:
json_list = list(json_file)
for json_str in json_list:
fixed_positions_dict = json.loads(json_str)
else:
if print_all:
print(40*'-')
print('fixed_positions_jsonl is NOT loaded')
fixed_positions_dict = None
if os.path.isfile(args.pssm_jsonl):
with open(args.pssm_jsonl, 'r') as json_file:
json_list = list(json_file)
pssm_dict = {}
for json_str in json_list:
pssm_dict.update(json.loads(json_str))
else:
if print_all:
print(40*'-')
print('pssm_jsonl is NOT loaded')
pssm_dict = None
if os.path.isfile(args.omit_AA_jsonl):
with open(args.omit_AA_jsonl, 'r') as json_file:
json_list = list(json_file)
for json_str in json_list:
omit_AA_dict = json.loads(json_str)
else:
if print_all:
print(40*'-')
print('omit_AA_jsonl is NOT loaded')
omit_AA_dict = None
if os.path.isfile(args.bias_AA_jsonl):
with open(args.bias_AA_jsonl, 'r') as json_file:
json_list = list(json_file)
for json_str in json_list:
bias_AA_dict = json.loads(json_str)
else:
if print_all:
print(40*'-')
print('bias_AA_jsonl is NOT loaded')
bias_AA_dict = None
if os.path.isfile(args.tied_positions_jsonl):
with open(args.tied_positions_jsonl, 'r') as json_file:
json_list = list(json_file)
for json_str in json_list:
tied_positions_dict = json.loads(json_str)
else:
if print_all:
print(40*'-')
print('tied_positions_jsonl is NOT loaded')
tied_positions_dict = None
if os.path.isfile(args.bias_by_res_jsonl):
with open(args.bias_by_res_jsonl, 'r') as json_file:
json_list = list(json_file)
for json_str in json_list:
bias_by_res_dict = json.loads(json_str)
if print_all:
print('bias by residue dictionary is loaded')
else:
if print_all:
print(40*'-')
print('bias by residue dictionary is not loaded, or not provided')
bias_by_res_dict = None
if print_all:
print(40*'-')
bias_AAs_np = np.zeros(len(alphabet))
if bias_AA_dict:
for n, AA in enumerate(alphabet):
if AA in list(bias_AA_dict.keys()):
bias_AAs_np[n] = bias_AA_dict[AA]
if args.pdb_path:
pdb_dict_list = parse_PDB(args.pdb_path, ca_only=args.ca_only)
dataset_valid = StructureDatasetPDB(pdb_dict_list, truncate=None, max_length=args.max_length)
all_chain_list = [item[-1:] for item in list(pdb_dict_list[0]) if item[:9]=='seq_chain'] #['A','B', 'C',...]
if args.pdb_path_chains:
designed_chain_list = [str(item) for item in args.pdb_path_chains.split()]
else:
designed_chain_list = all_chain_list
fixed_chain_list = [letter for letter in all_chain_list if letter not in designed_chain_list]
chain_id_dict = {}
chain_id_dict[pdb_dict_list[0]['name']]= (designed_chain_list, fixed_chain_list)
else:
dataset_valid = StructureDataset(args.jsonl_path, truncate=None, max_length=args.max_length, verbose=print_all)
checkpoint = torch.load(checkpoint_path, map_location=device)
noise_level_print = checkpoint['noise_level']
model = ProteinMPNN(ca_only=args.ca_only, num_letters=21, node_features=hidden_dim, edge_features=hidden_dim, hidden_dim=hidden_dim, num_encoder_layers=num_layers, num_decoder_layers=num_layers, augment_eps=args.backbone_noise, k_neighbors=checkpoint['num_edges'])
model.to(device)
model.load_state_dict(checkpoint['model_state_dict'])
model.eval()
if print_all:
print(40*'-')
print('Number of edges:', checkpoint['num_edges'])
print(f'Training noise level: {noise_level_print}A')
# Build paths for experiment
base_folder = folder_for_outputs
if base_folder[-1] != '/':
base_folder = base_folder + '/'
if not os.path.exists(base_folder):
os.makedirs(base_folder)
if not os.path.exists(base_folder + 'seqs'):
os.makedirs(base_folder + 'seqs')
if args.save_score:
if not os.path.exists(base_folder + 'scores'):
os.makedirs(base_folder + 'scores')
if args.score_only:
if not os.path.exists(base_folder + 'score_only'):
os.makedirs(base_folder + 'score_only')
if args.conditional_probs_only:
if not os.path.exists(base_folder + 'conditional_probs_only'):
os.makedirs(base_folder + 'conditional_probs_only')
if args.unconditional_probs_only:
if not os.path.exists(base_folder + 'unconditional_probs_only'):
os.makedirs(base_folder + 'unconditional_probs_only')
if args.save_probs:
if not os.path.exists(base_folder + 'probs'):
os.makedirs(base_folder + 'probs')
# Timing
start_time = time.time()
total_residues = 0
protein_list = []
total_step = 0
# Validation epoch
with torch.no_grad():
test_sum, test_weights = 0., 0.
for ix, protein in enumerate(dataset_valid):
score_list = []
global_score_list = []
all_probs_list = []
all_log_probs_list = []
S_sample_list = []
batch_clones = [copy.deepcopy(protein) for i in range(BATCH_COPIES)]
X, S, mask, lengths, chain_M, chain_encoding_all, chain_list_list, visible_list_list, masked_list_list, masked_chain_length_list_list, chain_M_pos, omit_AA_mask, residue_idx, dihedral_mask, tied_pos_list_of_lists_list, pssm_coef, pssm_bias, pssm_log_odds_all, bias_by_res_all, tied_beta = tied_featurize(batch_clones, device, chain_id_dict, fixed_positions_dict, omit_AA_dict, tied_positions_dict, pssm_dict, bias_by_res_dict, ca_only=args.ca_only)
pssm_log_odds_mask = (pssm_log_odds_all > args.pssm_threshold).float() #1.0 for true, 0.0 for false
name_ = batch_clones[0]['name']
if args.score_only:
loop_c = 0
if args.path_to_fasta:
fasta_names, fasta_seqs = parse_fasta(args.path_to_fasta, omit=["/"])
loop_c = len(fasta_seqs)
for fc in range(1+loop_c):
if fc == 0:
structure_sequence_score_file = base_folder + '/score_only/' + batch_clones[0]['name'] + f'_pdb'
else:
structure_sequence_score_file = base_folder + '/score_only/' + batch_clones[0]['name'] + f'_fasta_{fc}'
native_score_list = []
global_native_score_list = []
if fc > 0:
input_seq_length = len(fasta_seqs[fc-1])
S_input = torch.tensor([alphabet_dict[AA] for AA in fasta_seqs[fc-1]], device=device)[None,:].repeat(X.shape[0], 1)
S[:,:input_seq_length] = S_input #assumes that S and S_input are alphabetically sorted for masked_chains
for j in range(NUM_BATCHES):
randn_1 = torch.randn(chain_M.shape, device=X.device)
log_probs = model(X, S, mask, chain_M*chain_M_pos, residue_idx, chain_encoding_all, randn_1)
mask_for_loss = mask*chain_M*chain_M_pos
scores = _scores(S, log_probs, mask_for_loss)
native_score = scores.cpu().data.numpy()
native_score_list.append(native_score)
global_scores = _scores(S, log_probs, mask)
global_native_score = global_scores.cpu().data.numpy()
global_native_score_list.append(global_native_score)
native_score = np.concatenate(native_score_list, 0)
global_native_score = np.concatenate(global_native_score_list, 0)
ns_mean = native_score.mean()
ns_mean_print = np.format_float_positional(np.float32(ns_mean), unique=False, precision=4)
ns_std = native_score.std()
ns_std_print = np.format_float_positional(np.float32(ns_std), unique=False, precision=4)
global_ns_mean = global_native_score.mean()
global_ns_mean_print = np.format_float_positional(np.float32(global_ns_mean), unique=False, precision=4)
global_ns_std = global_native_score.std()
global_ns_std_print = np.format_float_positional(np.float32(global_ns_std), unique=False, precision=4)
ns_sample_size = native_score.shape[0]
seq_str = _S_to_seq(S[0,], chain_M[0,])
np.savez(structure_sequence_score_file, score=native_score, global_score=global_native_score, S=S[0,].cpu().numpy(), seq_str=seq_str)
if print_all:
if fc == 0:
print(f'Score for {name_} from PDB, mean: {ns_mean_print}, std: {ns_std_print}, sample size: {ns_sample_size}, global score, mean: {global_ns_mean_print}, std: {global_ns_std_print}, sample size: {ns_sample_size}')
else:
print(f'Score for {name_}_{fc} from FASTA, mean: {ns_mean_print}, std: {ns_std_print}, sample size: {ns_sample_size}, global score, mean: {global_ns_mean_print}, std: {global_ns_std_print}, sample size: {ns_sample_size}')
elif args.conditional_probs_only:
if print_all:
print(f'Calculating conditional probabilities for {name_}')
conditional_probs_only_file = base_folder + '/conditional_probs_only/' + batch_clones[0]['name']
log_conditional_probs_list = []
for j in range(NUM_BATCHES):
randn_1 = torch.randn(chain_M.shape, device=X.device)
log_conditional_probs = model.conditional_probs(X, S, mask, chain_M*chain_M_pos, residue_idx, chain_encoding_all, randn_1, args.conditional_probs_only_backbone)
log_conditional_probs_list.append(log_conditional_probs.cpu().numpy())
concat_log_p = np.concatenate(log_conditional_probs_list, 0) #[B, L, 21]
mask_out = (chain_M*chain_M_pos*mask)[0,].cpu().numpy()
np.savez(conditional_probs_only_file, log_p=concat_log_p, S=S[0,].cpu().numpy(), mask=mask[0,].cpu().numpy(), design_mask=mask_out)
elif args.unconditional_probs_only:
if print_all:
print(f'Calculating sequence unconditional probabilities for {name_}')
unconditional_probs_only_file = base_folder + '/unconditional_probs_only/' + batch_clones[0]['name']
log_unconditional_probs_list = []
for j in range(NUM_BATCHES):
log_unconditional_probs = model.unconditional_probs(X, mask, residue_idx, chain_encoding_all)
log_unconditional_probs_list.append(log_unconditional_probs.cpu().numpy())
concat_log_p = np.concatenate(log_unconditional_probs_list, 0) #[B, L, 21]
mask_out = (chain_M*chain_M_pos*mask)[0,].cpu().numpy()
np.savez(unconditional_probs_only_file, log_p=concat_log_p, S=S[0,].cpu().numpy(), mask=mask[0,].cpu().numpy(), design_mask=mask_out)
else:
randn_1 = torch.randn(chain_M.shape, device=X.device)
log_probs = model(X, S, mask, chain_M*chain_M_pos, residue_idx, chain_encoding_all, randn_1)
mask_for_loss = mask*chain_M*chain_M_pos
scores = _scores(S, log_probs, mask_for_loss) #score only the redesigned part
native_score = scores.cpu().data.numpy()
global_scores = _scores(S, log_probs, mask) #score the whole structure-sequence
global_native_score = global_scores.cpu().data.numpy()
# Generate some sequences
ali_file = base_folder + '/seqs/' + batch_clones[0]['name'] + '.fa'
score_file = base_folder + '/scores/' + batch_clones[0]['name'] + '.npz'
probs_file = base_folder + '/probs/' + batch_clones[0]['name'] + '.npz'
if print_all:
print(f'Generating sequences for: {name_}')
t0 = time.time()
with open(ali_file, 'w') as f:
for temp in temperatures:
for j in range(NUM_BATCHES):
randn_2 = torch.randn(chain_M.shape, device=X.device)
if tied_positions_dict == None:
sample_dict = model.sample(X, randn_2, S, chain_M, chain_encoding_all, residue_idx, mask=mask, temperature=temp, omit_AAs_np=omit_AAs_np, bias_AAs_np=bias_AAs_np, chain_M_pos=chain_M_pos, omit_AA_mask=omit_AA_mask, pssm_coef=pssm_coef, pssm_bias=pssm_bias, pssm_multi=args.pssm_multi, pssm_log_odds_flag=bool(args.pssm_log_odds_flag), pssm_log_odds_mask=pssm_log_odds_mask, pssm_bias_flag=bool(args.pssm_bias_flag), bias_by_res=bias_by_res_all)
S_sample = sample_dict["S"]
else:
sample_dict = model.tied_sample(X, randn_2, S, chain_M, chain_encoding_all, residue_idx, mask=mask, temperature=temp, omit_AAs_np=omit_AAs_np, bias_AAs_np=bias_AAs_np, chain_M_pos=chain_M_pos, omit_AA_mask=omit_AA_mask, pssm_coef=pssm_coef, pssm_bias=pssm_bias, pssm_multi=args.pssm_multi, pssm_log_odds_flag=bool(args.pssm_log_odds_flag), pssm_log_odds_mask=pssm_log_odds_mask, pssm_bias_flag=bool(args.pssm_bias_flag), tied_pos=tied_pos_list_of_lists_list[0], tied_beta=tied_beta, bias_by_res=bias_by_res_all)
# Compute scores
S_sample = sample_dict["S"]
log_probs = model(X, S_sample, mask, chain_M*chain_M_pos, residue_idx, chain_encoding_all, randn_2, use_input_decoding_order=True, decoding_order=sample_dict["decoding_order"])
mask_for_loss = mask*chain_M*chain_M_pos
scores = _scores(S_sample, log_probs, mask_for_loss)
scores = scores.cpu().data.numpy()
global_scores = _scores(S_sample, log_probs, mask) #score the whole structure-sequence
global_scores = global_scores.cpu().data.numpy()
all_probs_list.append(sample_dict["probs"].cpu().data.numpy())
all_log_probs_list.append(log_probs.cpu().data.numpy())
S_sample_list.append(S_sample.cpu().data.numpy())
for b_ix in range(BATCH_COPIES):
masked_chain_length_list = masked_chain_length_list_list[b_ix]
masked_list = masked_list_list[b_ix]
seq_recovery_rate = torch.sum(torch.sum(torch.nn.functional.one_hot(S[b_ix], 21)*torch.nn.functional.one_hot(S_sample[b_ix], 21),axis=-1)*mask_for_loss[b_ix])/torch.sum(mask_for_loss[b_ix])
seq = _S_to_seq(S_sample[b_ix], chain_M[b_ix])
score = scores[b_ix]
score_list.append(score)
global_score = global_scores[b_ix]
global_score_list.append(global_score)
native_seq = _S_to_seq(S[b_ix], chain_M[b_ix])
if b_ix == 0 and j==0 and temp==temperatures[0]:
start = 0
end = 0
list_of_AAs = []
for mask_l in masked_chain_length_list:
end += mask_l
list_of_AAs.append(native_seq[start:end])
start = end
native_seq = "".join(list(np.array(list_of_AAs)[np.argsort(masked_list)]))
l0 = 0
for mc_length in list(np.array(masked_chain_length_list)[np.argsort(masked_list)])[:-1]:
l0 += mc_length
native_seq = native_seq[:l0] + '/' + native_seq[l0:]
l0 += 1
sorted_masked_chain_letters = np.argsort(masked_list_list[0])
print_masked_chains = [masked_list_list[0][i] for i in sorted_masked_chain_letters]
sorted_visible_chain_letters = np.argsort(visible_list_list[0])
print_visible_chains = [visible_list_list[0][i] for i in sorted_visible_chain_letters]
native_score_print = np.format_float_positional(np.float32(native_score.mean()), unique=False, precision=4)
global_native_score_print = np.format_float_positional(np.float32(global_native_score.mean()), unique=False, precision=4)
script_dir = os.path.dirname(os.path.realpath(__file__))
try:
commit_str = subprocess.check_output(f'git --git-dir {script_dir}/.git rev-parse HEAD', shell=True, stderr=subprocess.DEVNULL).decode().strip()
except subprocess.CalledProcessError:
commit_str = 'unknown'
if args.ca_only:
print_model_name = 'CA_model_name'
else:
print_model_name = 'model_name'
f.write('>{}, score={}, global_score={}, fixed_chains={}, designed_chains={}, {}={}, git_hash={}, seed={}\n{}\n'.format(name_, native_score_print, global_native_score_print, print_visible_chains, print_masked_chains, print_model_name, args.model_name, commit_str, seed, native_seq)) #write the native sequence
start = 0
end = 0
list_of_AAs = []
for mask_l in masked_chain_length_list:
end += mask_l
list_of_AAs.append(seq[start:end])
start = end
seq = "".join(list(np.array(list_of_AAs)[np.argsort(masked_list)]))
l0 = 0
for mc_length in list(np.array(masked_chain_length_list)[np.argsort(masked_list)])[:-1]:
l0 += mc_length
seq = seq[:l0] + '/' + seq[l0:]
l0 += 1
score_print = np.format_float_positional(np.float32(score), unique=False, precision=4)
global_score_print = np.format_float_positional(np.float32(global_score), unique=False, precision=4)
seq_rec_print = np.format_float_positional(np.float32(seq_recovery_rate.detach().cpu().numpy()), unique=False, precision=4)
sample_number = j*BATCH_COPIES+b_ix+1
f.write('>T={}, sample={}, score={}, global_score={}, seq_recovery={}\n{}\n'.format(temp,sample_number,score_print,global_score_print,seq_rec_print,seq)) #write generated sequence
if args.save_score:
np.savez(score_file, score=np.array(score_list, np.float32), global_score=np.array(global_score_list, np.float32))
if args.save_probs:
all_probs_concat = np.concatenate(all_probs_list)
all_log_probs_concat = np.concatenate(all_log_probs_list)
S_sample_concat = np.concatenate(S_sample_list)
np.savez(probs_file, probs=np.array(all_probs_concat, np.float32), log_probs=np.array(all_log_probs_concat, np.float32), S=np.array(S_sample_concat, np.int32), mask=mask_for_loss.cpu().data.numpy(), chain_order=chain_list_list)
t1 = time.time()
dt = round(float(t1-t0), 4)
num_seqs = len(temperatures)*NUM_BATCHES*BATCH_COPIES
total_length = X.shape[1]
if print_all:
print(f'{num_seqs} sequences of length {total_length} generated in {dt} seconds')
if __name__ == "__main__":
argparser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
argparser.add_argument("--suppress_print", type=int, default=0, help="0 for False, 1 for True")
argparser.add_argument("--ca_only", action="store_true", default=False, help="Parse CA-only structures and use CA-only models (default: false)")
argparser.add_argument("--path_to_model_weights", type=str, default="", help="Path to model weights folder;")
argparser.add_argument("--model_name", type=str, default="v_48_020", help="ProteinMPNN model name: v_48_002, v_48_010, v_48_020, v_48_030; v_48_010=version with 48 edges 0.10A noise")
argparser.add_argument("--use_soluble_model", action="store_true", default=False, help="Flag to load ProteinMPNN weights trained on soluble proteins only.")
argparser.add_argument("--seed", type=int, default=0, help="If set to 0 then a random seed will be picked;")
argparser.add_argument("--save_score", type=int, default=0, help="0 for False, 1 for True; save score=-log_prob to npy files")
argparser.add_argument("--save_probs", type=int, default=0, help="0 for False, 1 for True; save MPNN predicted probabilites per position")
argparser.add_argument("--score_only", type=int, default=0, help="0 for False, 1 for True; score input backbone-sequence pairs")
argparser.add_argument("--path_to_fasta", type=str, default="", help="score provided input sequence in a fasta format; e.g. GGGGGG/PPPPS/WWW for chains A, B, C sorted alphabetically and separated by /")
argparser.add_argument("--conditional_probs_only", type=int, default=0, help="0 for False, 1 for True; output conditional probabilities p(s_i given the rest of the sequence and backbone)")
argparser.add_argument("--conditional_probs_only_backbone", type=int, default=0, help="0 for False, 1 for True; if true output conditional probabilities p(s_i given backbone)")
argparser.add_argument("--unconditional_probs_only", type=int, default=0, help="0 for False, 1 for True; output unconditional probabilities p(s_i given backbone) in one forward pass")
argparser.add_argument("--backbone_noise", type=float, default=0.00, help="Standard deviation of Gaussian noise to add to backbone atoms")
argparser.add_argument("--num_seq_per_target", type=int, default=1, help="Number of sequences to generate per target")
argparser.add_argument("--batch_size", type=int, default=1, help="Batch size; can set higher for titan, quadro GPUs, reduce this if running out of GPU memory")
argparser.add_argument("--max_length", type=int, default=200000, help="Max sequence length")
argparser.add_argument("--sampling_temp", type=str, default="0.1", help="A string of temperatures, 0.2 0.25 0.5. Sampling temperature for amino acids. Suggested values 0.1, 0.15, 0.2, 0.25, 0.3. Higher values will lead to more diversity.")
argparser.add_argument("--out_folder", type=str, help="Path to a folder to output sequences, e.g. /home/out/")
argparser.add_argument("--pdb_path", type=str, default='', help="Path to a single PDB to be designed")
argparser.add_argument("--pdb_path_chains", type=str, default='', help="Define which chains need to be designed for a single PDB ")
argparser.add_argument("--jsonl_path", type=str, help="Path to a folder with parsed pdb into jsonl")
argparser.add_argument("--chain_id_jsonl",type=str, default='', help="Path to a dictionary specifying which chains need to be designed and which ones are fixed, if not specied all chains will be designed.")
argparser.add_argument("--fixed_positions_jsonl", type=str, default='', help="Path to a dictionary with fixed positions")
argparser.add_argument("--omit_AAs", type=list, default='X', help="Specify which amino acids should be omitted in the generated sequence, e.g. 'AC' would omit alanine and cystine.")
argparser.add_argument("--bias_AA_jsonl", type=str, default='', help="Path to a dictionary which specifies AA composion bias if neededi, e.g. {A: -1.1, F: 0.7} would make A less likely and F more likely.")
argparser.add_argument("--bias_by_res_jsonl", default='', help="Path to dictionary with per position bias.")
argparser.add_argument("--omit_AA_jsonl", type=str, default='', help="Path to a dictionary which specifies which amino acids need to be omited from design at specific chain indices")
argparser.add_argument("--pssm_jsonl", type=str, default='', help="Path to a dictionary with pssm")
argparser.add_argument("--pssm_multi", type=float, default=0.0, help="A value between [0.0, 1.0], 0.0 means do not use pssm, 1.0 ignore MPNN predictions")
argparser.add_argument("--pssm_threshold", type=float, default=0.0, help="A value between -inf + inf to restric per position AAs")
argparser.add_argument("--pssm_log_odds_flag", type=int, default=0, help="0 for False, 1 for True")
argparser.add_argument("--pssm_bias_flag", type=int, default=0, help="0 for False, 1 for True")
argparser.add_argument("--tied_positions_jsonl", type=str, default='', help="Path to a dictionary with tied positions")
args = argparser.parse_args()
main(args)
|