Spaces:
Sleeping
Sleeping
File size: 22,292 Bytes
00aa807 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 |
from __future__ import print_function
import json, time, os, sys, glob
import shutil
import numpy as np
import torch
from torch import optim
from torch.utils.data import DataLoader
from torch.utils.data.dataset import random_split, Subset
import torch.utils
import torch.utils.checkpoint
import copy
import torch.nn as nn
import torch.nn.functional as F
import random
import itertools
def featurize(batch, device):
alphabet = 'ACDEFGHIKLMNPQRSTVWYX'
B = len(batch)
lengths = np.array([len(b['seq']) for b in batch], dtype=np.int32) #sum of chain seq lengths
L_max = max([len(b['seq']) for b in batch])
X = np.zeros([B, L_max, 4, 3])
residue_idx = -100*np.ones([B, L_max], dtype=np.int32) #residue idx with jumps across chains
chain_M = np.zeros([B, L_max], dtype=np.int32) #1.0 for the bits that need to be predicted, 0.0 for the bits that are given
mask_self = np.ones([B, L_max, L_max], dtype=np.int32) #for interface loss calculation - 0.0 for self interaction, 1.0 for other
chain_encoding_all = np.zeros([B, L_max], dtype=np.int32) #integer encoding for chains 0, 0, 0,...0, 1, 1,..., 1, 2, 2, 2...
S = np.zeros([B, L_max], dtype=np.int32) #sequence AAs integers
init_alphabet = ['A', 'B', 'C', 'D', 'E', 'F', 'G','H', 'I', 'J','K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T','U', 'V','W','X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f', 'g','h', 'i', 'j','k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't','u', 'v','w','x', 'y', 'z']
extra_alphabet = [str(item) for item in list(np.arange(300))]
chain_letters = init_alphabet + extra_alphabet
for i, b in enumerate(batch):
masked_chains = b['masked_list']
visible_chains = b['visible_list']
all_chains = masked_chains + visible_chains
visible_temp_dict = {}
masked_temp_dict = {}
for step, letter in enumerate(all_chains):
chain_seq = b[f'seq_chain_{letter}']
if letter in visible_chains:
visible_temp_dict[letter] = chain_seq
elif letter in masked_chains:
masked_temp_dict[letter] = chain_seq
for km, vm in masked_temp_dict.items():
for kv, vv in visible_temp_dict.items():
if vm == vv:
if kv not in masked_chains:
masked_chains.append(kv)
if kv in visible_chains:
visible_chains.remove(kv)
all_chains = masked_chains + visible_chains
random.shuffle(all_chains) #randomly shuffle chain order
num_chains = b['num_of_chains']
mask_dict = {}
x_chain_list = []
chain_mask_list = []
chain_seq_list = []
chain_encoding_list = []
c = 1
l0 = 0
l1 = 0
for step, letter in enumerate(all_chains):
if letter in visible_chains:
chain_seq = b[f'seq_chain_{letter}']
chain_length = len(chain_seq)
chain_coords = b[f'coords_chain_{letter}'] #this is a dictionary
chain_mask = np.zeros(chain_length) #0.0 for visible chains
x_chain = np.stack([chain_coords[c] for c in [f'N_chain_{letter}', f'CA_chain_{letter}', f'C_chain_{letter}', f'O_chain_{letter}']], 1) #[chain_length,4,3]
x_chain_list.append(x_chain)
chain_mask_list.append(chain_mask)
chain_seq_list.append(chain_seq)
chain_encoding_list.append(c*np.ones(np.array(chain_mask).shape[0]))
l1 += chain_length
mask_self[i, l0:l1, l0:l1] = np.zeros([chain_length, chain_length])
residue_idx[i, l0:l1] = 100*(c-1)+np.arange(l0, l1)
l0 += chain_length
c+=1
elif letter in masked_chains:
chain_seq = b[f'seq_chain_{letter}']
chain_length = len(chain_seq)
chain_coords = b[f'coords_chain_{letter}'] #this is a dictionary
chain_mask = np.ones(chain_length) #0.0 for visible chains
x_chain = np.stack([chain_coords[c] for c in [f'N_chain_{letter}', f'CA_chain_{letter}', f'C_chain_{letter}', f'O_chain_{letter}']], 1) #[chain_lenght,4,3]
x_chain_list.append(x_chain)
chain_mask_list.append(chain_mask)
chain_seq_list.append(chain_seq)
chain_encoding_list.append(c*np.ones(np.array(chain_mask).shape[0]))
l1 += chain_length
mask_self[i, l0:l1, l0:l1] = np.zeros([chain_length, chain_length])
residue_idx[i, l0:l1] = 100*(c-1)+np.arange(l0, l1)
l0 += chain_length
c+=1
x = np.concatenate(x_chain_list,0) #[L, 4, 3]
all_sequence = "".join(chain_seq_list)
m = np.concatenate(chain_mask_list,0) #[L,], 1.0 for places that need to be predicted
chain_encoding = np.concatenate(chain_encoding_list,0)
l = len(all_sequence)
x_pad = np.pad(x, [[0,L_max-l], [0,0], [0,0]], 'constant', constant_values=(np.nan, ))
X[i,:,:,:] = x_pad
m_pad = np.pad(m, [[0,L_max-l]], 'constant', constant_values=(0.0, ))
chain_M[i,:] = m_pad
chain_encoding_pad = np.pad(chain_encoding, [[0,L_max-l]], 'constant', constant_values=(0.0, ))
chain_encoding_all[i,:] = chain_encoding_pad
# Convert to labels
indices = np.asarray([alphabet.index(a) for a in all_sequence], dtype=np.int32)
S[i, :l] = indices
isnan = np.isnan(X)
mask = np.isfinite(np.sum(X,(2,3))).astype(np.float32)
X[isnan] = 0.
# Conversion
residue_idx = torch.from_numpy(residue_idx).to(dtype=torch.long,device=device)
S = torch.from_numpy(S).to(dtype=torch.long,device=device)
X = torch.from_numpy(X).to(dtype=torch.float32, device=device)
mask = torch.from_numpy(mask).to(dtype=torch.float32, device=device)
mask_self = torch.from_numpy(mask_self).to(dtype=torch.float32, device=device)
chain_M = torch.from_numpy(chain_M).to(dtype=torch.float32, device=device)
chain_encoding_all = torch.from_numpy(chain_encoding_all).to(dtype=torch.long, device=device)
return X, S, mask, lengths, chain_M, residue_idx, mask_self, chain_encoding_all
def loss_nll(S, log_probs, mask):
""" Negative log probabilities """
criterion = torch.nn.NLLLoss(reduction='none')
loss = criterion(
log_probs.contiguous().view(-1, log_probs.size(-1)), S.contiguous().view(-1)
).view(S.size())
S_argmaxed = torch.argmax(log_probs,-1) #[B, L]
true_false = (S == S_argmaxed).float()
loss_av = torch.sum(loss * mask) / torch.sum(mask)
return loss, loss_av, true_false
def loss_smoothed(S, log_probs, mask, weight=0.1):
""" Negative log probabilities """
S_onehot = torch.nn.functional.one_hot(S, 21).float()
# Label smoothing
S_onehot = S_onehot + weight / float(S_onehot.size(-1))
S_onehot = S_onehot / S_onehot.sum(-1, keepdim=True)
loss = -(S_onehot * log_probs).sum(-1)
loss_av = torch.sum(loss * mask) / 2000.0 #fixed
return loss, loss_av
# The following gather functions
def gather_edges(edges, neighbor_idx):
# Features [B,N,N,C] at Neighbor indices [B,N,K] => Neighbor features [B,N,K,C]
neighbors = neighbor_idx.unsqueeze(-1).expand(-1, -1, -1, edges.size(-1))
edge_features = torch.gather(edges, 2, neighbors)
return edge_features
def gather_nodes(nodes, neighbor_idx):
# Features [B,N,C] at Neighbor indices [B,N,K] => [B,N,K,C]
# Flatten and expand indices per batch [B,N,K] => [B,NK] => [B,NK,C]
neighbors_flat = neighbor_idx.view((neighbor_idx.shape[0], -1))
neighbors_flat = neighbors_flat.unsqueeze(-1).expand(-1, -1, nodes.size(2))
# Gather and re-pack
neighbor_features = torch.gather(nodes, 1, neighbors_flat)
neighbor_features = neighbor_features.view(list(neighbor_idx.shape)[:3] + [-1])
return neighbor_features
def gather_nodes_t(nodes, neighbor_idx):
# Features [B,N,C] at Neighbor index [B,K] => Neighbor features[B,K,C]
idx_flat = neighbor_idx.unsqueeze(-1).expand(-1, -1, nodes.size(2))
neighbor_features = torch.gather(nodes, 1, idx_flat)
return neighbor_features
def cat_neighbors_nodes(h_nodes, h_neighbors, E_idx):
h_nodes = gather_nodes(h_nodes, E_idx)
h_nn = torch.cat([h_neighbors, h_nodes], -1)
return h_nn
class EncLayer(nn.Module):
def __init__(self, num_hidden, num_in, dropout=0.1, num_heads=None, scale=30):
super(EncLayer, self).__init__()
self.num_hidden = num_hidden
self.num_in = num_in
self.scale = scale
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.dropout3 = nn.Dropout(dropout)
self.norm1 = nn.LayerNorm(num_hidden)
self.norm2 = nn.LayerNorm(num_hidden)
self.norm3 = nn.LayerNorm(num_hidden)
self.W1 = nn.Linear(num_hidden + num_in, num_hidden, bias=True)
self.W2 = nn.Linear(num_hidden, num_hidden, bias=True)
self.W3 = nn.Linear(num_hidden, num_hidden, bias=True)
self.W11 = nn.Linear(num_hidden + num_in, num_hidden, bias=True)
self.W12 = nn.Linear(num_hidden, num_hidden, bias=True)
self.W13 = nn.Linear(num_hidden, num_hidden, bias=True)
self.act = torch.nn.GELU()
self.dense = PositionWiseFeedForward(num_hidden, num_hidden * 4)
def forward(self, h_V, h_E, E_idx, mask_V=None, mask_attend=None):
""" Parallel computation of full transformer layer """
h_EV = cat_neighbors_nodes(h_V, h_E, E_idx)
h_V_expand = h_V.unsqueeze(-2).expand(-1,-1,h_EV.size(-2),-1)
h_EV = torch.cat([h_V_expand, h_EV], -1)
h_message = self.W3(self.act(self.W2(self.act(self.W1(h_EV)))))
if mask_attend is not None:
h_message = mask_attend.unsqueeze(-1) * h_message
dh = torch.sum(h_message, -2) / self.scale
h_V = self.norm1(h_V + self.dropout1(dh))
dh = self.dense(h_V)
h_V = self.norm2(h_V + self.dropout2(dh))
if mask_V is not None:
mask_V = mask_V.unsqueeze(-1)
h_V = mask_V * h_V
h_EV = cat_neighbors_nodes(h_V, h_E, E_idx)
h_V_expand = h_V.unsqueeze(-2).expand(-1,-1,h_EV.size(-2),-1)
h_EV = torch.cat([h_V_expand, h_EV], -1)
h_message = self.W13(self.act(self.W12(self.act(self.W11(h_EV)))))
h_E = self.norm3(h_E + self.dropout3(h_message))
return h_V, h_E
class DecLayer(nn.Module):
def __init__(self, num_hidden, num_in, dropout=0.1, num_heads=None, scale=30):
super(DecLayer, self).__init__()
self.num_hidden = num_hidden
self.num_in = num_in
self.scale = scale
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.norm1 = nn.LayerNorm(num_hidden)
self.norm2 = nn.LayerNorm(num_hidden)
self.W1 = nn.Linear(num_hidden + num_in, num_hidden, bias=True)
self.W2 = nn.Linear(num_hidden, num_hidden, bias=True)
self.W3 = nn.Linear(num_hidden, num_hidden, bias=True)
self.act = torch.nn.GELU()
self.dense = PositionWiseFeedForward(num_hidden, num_hidden * 4)
def forward(self, h_V, h_E, mask_V=None, mask_attend=None):
""" Parallel computation of full transformer layer """
# Concatenate h_V_i to h_E_ij
h_V_expand = h_V.unsqueeze(-2).expand(-1,-1,h_E.size(-2),-1)
h_EV = torch.cat([h_V_expand, h_E], -1)
h_message = self.W3(self.act(self.W2(self.act(self.W1(h_EV)))))
if mask_attend is not None:
h_message = mask_attend.unsqueeze(-1) * h_message
dh = torch.sum(h_message, -2) / self.scale
h_V = self.norm1(h_V + self.dropout1(dh))
# Position-wise feedforward
dh = self.dense(h_V)
h_V = self.norm2(h_V + self.dropout2(dh))
if mask_V is not None:
mask_V = mask_V.unsqueeze(-1)
h_V = mask_V * h_V
return h_V
class PositionWiseFeedForward(nn.Module):
def __init__(self, num_hidden, num_ff):
super(PositionWiseFeedForward, self).__init__()
self.W_in = nn.Linear(num_hidden, num_ff, bias=True)
self.W_out = nn.Linear(num_ff, num_hidden, bias=True)
self.act = torch.nn.GELU()
def forward(self, h_V):
h = self.act(self.W_in(h_V))
h = self.W_out(h)
return h
class PositionalEncodings(nn.Module):
def __init__(self, num_embeddings, max_relative_feature=32):
super(PositionalEncodings, self).__init__()
self.num_embeddings = num_embeddings
self.max_relative_feature = max_relative_feature
self.linear = nn.Linear(2*max_relative_feature+1+1, num_embeddings)
def forward(self, offset, mask):
d = torch.clip(offset + self.max_relative_feature, 0, 2*self.max_relative_feature)*mask + (1-mask)*(2*self.max_relative_feature+1)
d_onehot = torch.nn.functional.one_hot(d, 2*self.max_relative_feature+1+1)
E = self.linear(d_onehot.float())
return E
class ProteinFeatures(nn.Module):
def __init__(self, edge_features, node_features, num_positional_embeddings=16,
num_rbf=16, top_k=30, augment_eps=0., num_chain_embeddings=16):
""" Extract protein features """
super(ProteinFeatures, self).__init__()
self.edge_features = edge_features
self.node_features = node_features
self.top_k = top_k
self.augment_eps = augment_eps
self.num_rbf = num_rbf
self.num_positional_embeddings = num_positional_embeddings
self.embeddings = PositionalEncodings(num_positional_embeddings)
node_in, edge_in = 6, num_positional_embeddings + num_rbf*25
self.edge_embedding = nn.Linear(edge_in, edge_features, bias=False)
self.norm_edges = nn.LayerNorm(edge_features)
def _dist(self, X, mask, eps=1E-6):
mask_2D = torch.unsqueeze(mask,1) * torch.unsqueeze(mask,2)
dX = torch.unsqueeze(X,1) - torch.unsqueeze(X,2)
D = mask_2D * torch.sqrt(torch.sum(dX**2, 3) + eps)
D_max, _ = torch.max(D, -1, keepdim=True)
D_adjust = D + (1. - mask_2D) * D_max
sampled_top_k = self.top_k
D_neighbors, E_idx = torch.topk(D_adjust, np.minimum(self.top_k, X.shape[1]), dim=-1, largest=False)
return D_neighbors, E_idx
def _rbf(self, D):
device = D.device
D_min, D_max, D_count = 2., 22., self.num_rbf
D_mu = torch.linspace(D_min, D_max, D_count, device=device)
D_mu = D_mu.view([1,1,1,-1])
D_sigma = (D_max - D_min) / D_count
D_expand = torch.unsqueeze(D, -1)
RBF = torch.exp(-((D_expand - D_mu) / D_sigma)**2)
return RBF
def _get_rbf(self, A, B, E_idx):
D_A_B = torch.sqrt(torch.sum((A[:,:,None,:] - B[:,None,:,:])**2,-1) + 1e-6) #[B, L, L]
D_A_B_neighbors = gather_edges(D_A_B[:,:,:,None], E_idx)[:,:,:,0] #[B,L,K]
RBF_A_B = self._rbf(D_A_B_neighbors)
return RBF_A_B
def forward(self, X, mask, residue_idx, chain_labels):
if self.training and self.augment_eps > 0:
X = X + self.augment_eps * torch.randn_like(X)
b = X[:,:,1,:] - X[:,:,0,:]
c = X[:,:,2,:] - X[:,:,1,:]
a = torch.cross(b, c, dim=-1)
Cb = -0.58273431*a + 0.56802827*b - 0.54067466*c + X[:,:,1,:]
Ca = X[:,:,1,:]
N = X[:,:,0,:]
C = X[:,:,2,:]
O = X[:,:,3,:]
D_neighbors, E_idx = self._dist(Ca, mask)
RBF_all = []
RBF_all.append(self._rbf(D_neighbors)) #Ca-Ca
RBF_all.append(self._get_rbf(N, N, E_idx)) #N-N
RBF_all.append(self._get_rbf(C, C, E_idx)) #C-C
RBF_all.append(self._get_rbf(O, O, E_idx)) #O-O
RBF_all.append(self._get_rbf(Cb, Cb, E_idx)) #Cb-Cb
RBF_all.append(self._get_rbf(Ca, N, E_idx)) #Ca-N
RBF_all.append(self._get_rbf(Ca, C, E_idx)) #Ca-C
RBF_all.append(self._get_rbf(Ca, O, E_idx)) #Ca-O
RBF_all.append(self._get_rbf(Ca, Cb, E_idx)) #Ca-Cb
RBF_all.append(self._get_rbf(N, C, E_idx)) #N-C
RBF_all.append(self._get_rbf(N, O, E_idx)) #N-O
RBF_all.append(self._get_rbf(N, Cb, E_idx)) #N-Cb
RBF_all.append(self._get_rbf(Cb, C, E_idx)) #Cb-C
RBF_all.append(self._get_rbf(Cb, O, E_idx)) #Cb-O
RBF_all.append(self._get_rbf(O, C, E_idx)) #O-C
RBF_all.append(self._get_rbf(N, Ca, E_idx)) #N-Ca
RBF_all.append(self._get_rbf(C, Ca, E_idx)) #C-Ca
RBF_all.append(self._get_rbf(O, Ca, E_idx)) #O-Ca
RBF_all.append(self._get_rbf(Cb, Ca, E_idx)) #Cb-Ca
RBF_all.append(self._get_rbf(C, N, E_idx)) #C-N
RBF_all.append(self._get_rbf(O, N, E_idx)) #O-N
RBF_all.append(self._get_rbf(Cb, N, E_idx)) #Cb-N
RBF_all.append(self._get_rbf(C, Cb, E_idx)) #C-Cb
RBF_all.append(self._get_rbf(O, Cb, E_idx)) #O-Cb
RBF_all.append(self._get_rbf(C, O, E_idx)) #C-O
RBF_all = torch.cat(tuple(RBF_all), dim=-1)
offset = residue_idx[:,:,None]-residue_idx[:,None,:]
offset = gather_edges(offset[:,:,:,None], E_idx)[:,:,:,0] #[B, L, K]
d_chains = ((chain_labels[:, :, None] - chain_labels[:,None,:])==0).long() #find self vs non-self interaction
E_chains = gather_edges(d_chains[:,:,:,None], E_idx)[:,:,:,0]
E_positional = self.embeddings(offset.long(), E_chains)
E = torch.cat((E_positional, RBF_all), -1)
E = self.edge_embedding(E)
E = self.norm_edges(E)
return E, E_idx
class ProteinMPNN(nn.Module):
def __init__(self, num_letters=21, node_features=128, edge_features=128,
hidden_dim=128, num_encoder_layers=3, num_decoder_layers=3,
vocab=21, k_neighbors=32, augment_eps=0.1, dropout=0.1):
super(ProteinMPNN, self).__init__()
# Hyperparameters
self.node_features = node_features
self.edge_features = edge_features
self.hidden_dim = hidden_dim
self.features = ProteinFeatures(node_features, edge_features, top_k=k_neighbors, augment_eps=augment_eps)
self.W_e = nn.Linear(edge_features, hidden_dim, bias=True)
self.W_s = nn.Embedding(vocab, hidden_dim)
# Encoder layers
self.encoder_layers = nn.ModuleList([
EncLayer(hidden_dim, hidden_dim*2, dropout=dropout)
for _ in range(num_encoder_layers)
])
# Decoder layers
self.decoder_layers = nn.ModuleList([
DecLayer(hidden_dim, hidden_dim*3, dropout=dropout)
for _ in range(num_decoder_layers)
])
self.W_out = nn.Linear(hidden_dim, num_letters, bias=True)
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(self, X, S, mask, chain_M, residue_idx, chain_encoding_all):
""" Graph-conditioned sequence model """
device=X.device
# Prepare node and edge embeddings
E, E_idx = self.features(X, mask, residue_idx, chain_encoding_all)
h_V = torch.zeros((E.shape[0], E.shape[1], E.shape[-1]), device=E.device)
h_E = self.W_e(E)
# Encoder is unmasked self-attention
mask_attend = gather_nodes(mask.unsqueeze(-1), E_idx).squeeze(-1)
mask_attend = mask.unsqueeze(-1) * mask_attend
for layer in self.encoder_layers:
h_V, h_E = torch.utils.checkpoint.checkpoint(layer, h_V, h_E, E_idx, mask, mask_attend)
# Concatenate sequence embeddings for autoregressive decoder
h_S = self.W_s(S)
h_ES = cat_neighbors_nodes(h_S, h_E, E_idx)
# Build encoder embeddings
h_EX_encoder = cat_neighbors_nodes(torch.zeros_like(h_S), h_E, E_idx)
h_EXV_encoder = cat_neighbors_nodes(h_V, h_EX_encoder, E_idx)
chain_M = chain_M*mask #update chain_M to include missing regions
decoding_order = torch.argsort((chain_M+0.0001)*(torch.abs(torch.randn(chain_M.shape, device=device)))) #[numbers will be smaller for places where chain_M = 0.0 and higher for places where chain_M = 1.0]
mask_size = E_idx.shape[1]
permutation_matrix_reverse = torch.nn.functional.one_hot(decoding_order, num_classes=mask_size).float()
order_mask_backward = torch.einsum('ij, biq, bjp->bqp',(1-torch.triu(torch.ones(mask_size,mask_size, device=device))), permutation_matrix_reverse, permutation_matrix_reverse)
mask_attend = torch.gather(order_mask_backward, 2, E_idx).unsqueeze(-1)
mask_1D = mask.view([mask.size(0), mask.size(1), 1, 1])
mask_bw = mask_1D * mask_attend
mask_fw = mask_1D * (1. - mask_attend)
h_EXV_encoder_fw = mask_fw * h_EXV_encoder
for layer in self.decoder_layers:
h_ESV = cat_neighbors_nodes(h_V, h_ES, E_idx)
h_ESV = mask_bw * h_ESV + h_EXV_encoder_fw
h_V = torch.utils.checkpoint.checkpoint(layer, h_V, h_ESV, mask)
logits = self.W_out(h_V)
log_probs = F.log_softmax(logits, dim=-1)
return log_probs
class NoamOpt:
"Optim wrapper that implements rate."
def __init__(self, model_size, factor, warmup, optimizer, step):
self.optimizer = optimizer
self._step = step
self.warmup = warmup
self.factor = factor
self.model_size = model_size
self._rate = 0
@property
def param_groups(self):
"""Return param_groups."""
return self.optimizer.param_groups
def step(self):
"Update parameters and rate"
self._step += 1
rate = self.rate()
for p in self.optimizer.param_groups:
p['lr'] = rate
self._rate = rate
self.optimizer.step()
def rate(self, step = None):
"Implement `lrate` above"
if step is None:
step = self._step
return self.factor * \
(self.model_size ** (-0.5) *
min(step ** (-0.5), step * self.warmup ** (-1.5)))
def zero_grad(self):
self.optimizer.zero_grad()
def get_std_opt(parameters, d_model, step):
return NoamOpt(
d_model, 2, 4000, torch.optim.Adam(parameters, lr=0, betas=(0.9, 0.98), eps=1e-9), step
)
|