File size: 13,106 Bytes
00aa807
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import argparse
import os.path

def main(args):
    import json, time, os, sys, glob
    import shutil
    import warnings
    import numpy as np
    import torch
    from torch import optim
    from torch.utils.data import DataLoader
    import queue
    import copy
    import torch.nn as nn
    import torch.nn.functional as F
    import random
    import os.path
    import subprocess
    from concurrent.futures import ProcessPoolExecutor    
    from utils import worker_init_fn, get_pdbs, loader_pdb, build_training_clusters, PDB_dataset, StructureDataset, StructureLoader
    from model_utils import featurize, loss_smoothed, loss_nll, get_std_opt, ProteinMPNN

    scaler = torch.cuda.amp.GradScaler()
     
    device = torch.device("cuda:0" if (torch.cuda.is_available()) else "cpu")

    base_folder = time.strftime(args.path_for_outputs, time.localtime())

    if base_folder[-1] != '/':
        base_folder += '/'
    if not os.path.exists(base_folder):
        os.makedirs(base_folder)
    subfolders = ['model_weights']
    for subfolder in subfolders:
        if not os.path.exists(base_folder + subfolder):
            os.makedirs(base_folder + subfolder)

    PATH = args.previous_checkpoint

    logfile = base_folder + 'log.txt'
    if not PATH:
        with open(logfile, 'w') as f:
            f.write('Epoch\tTrain\tValidation\n')

    data_path = args.path_for_training_data
    params = {
        "LIST"    : f"{data_path}/list.csv", 
        "VAL"     : f"{data_path}/valid_clusters.txt",
        "TEST"    : f"{data_path}/test_clusters.txt",
        "DIR"     : f"{data_path}",
        "DATCUT"  : "2030-Jan-01",
        "RESCUT"  : args.rescut, #resolution cutoff for PDBs
        "HOMO"    : 0.70 #min seq.id. to detect homo chains
    }


    LOAD_PARAM = {'batch_size': 1,
                  'shuffle': True,
                  'pin_memory':False,
                  'num_workers': 4}

   
    if args.debug:
        args.num_examples_per_epoch = 50
        args.max_protein_length = 1000
        args.batch_size = 1000

    train, valid, test = build_training_clusters(params, args.debug)
     
    train_set = PDB_dataset(list(train.keys()), loader_pdb, train, params)
    train_loader = torch.utils.data.DataLoader(train_set, worker_init_fn=worker_init_fn, **LOAD_PARAM)
    valid_set = PDB_dataset(list(valid.keys()), loader_pdb, valid, params)
    valid_loader = torch.utils.data.DataLoader(valid_set, worker_init_fn=worker_init_fn, **LOAD_PARAM)


    model = ProteinMPNN(node_features=args.hidden_dim, 
                        edge_features=args.hidden_dim, 
                        hidden_dim=args.hidden_dim, 
                        num_encoder_layers=args.num_encoder_layers, 
                        num_decoder_layers=args.num_encoder_layers, 
                        k_neighbors=args.num_neighbors, 
                        dropout=args.dropout, 
                        augment_eps=args.backbone_noise)
    model.to(device)


    if PATH:
        checkpoint = torch.load(PATH)
        total_step = checkpoint['step'] #write total_step from the checkpoint
        epoch = checkpoint['epoch'] #write epoch from the checkpoint
        model.load_state_dict(checkpoint['model_state_dict'])
    else:
        total_step = 0
        epoch = 0

    optimizer = get_std_opt(model.parameters(), args.hidden_dim, total_step)


    if PATH:
        optimizer.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])


    with ProcessPoolExecutor(max_workers=12) as executor:
        q = queue.Queue(maxsize=3)
        p = queue.Queue(maxsize=3)
        for i in range(3):
            q.put_nowait(executor.submit(get_pdbs, train_loader, 1, args.max_protein_length, args.num_examples_per_epoch))
            p.put_nowait(executor.submit(get_pdbs, valid_loader, 1, args.max_protein_length, args.num_examples_per_epoch))
        pdb_dict_train = q.get().result()
        pdb_dict_valid = p.get().result()
       
        dataset_train = StructureDataset(pdb_dict_train, truncate=None, max_length=args.max_protein_length) 
        dataset_valid = StructureDataset(pdb_dict_valid, truncate=None, max_length=args.max_protein_length)
        
        loader_train = StructureLoader(dataset_train, batch_size=args.batch_size)
        loader_valid = StructureLoader(dataset_valid, batch_size=args.batch_size)
        
        reload_c = 0 
        for e in range(args.num_epochs):
            t0 = time.time()
            e = epoch + e
            model.train()
            train_sum, train_weights = 0., 0.
            train_acc = 0.
            if e % args.reload_data_every_n_epochs == 0:
                if reload_c != 0:
                    pdb_dict_train = q.get().result()
                    dataset_train = StructureDataset(pdb_dict_train, truncate=None, max_length=args.max_protein_length)
                    loader_train = StructureLoader(dataset_train, batch_size=args.batch_size)
                    pdb_dict_valid = p.get().result()
                    dataset_valid = StructureDataset(pdb_dict_valid, truncate=None, max_length=args.max_protein_length)
                    loader_valid = StructureLoader(dataset_valid, batch_size=args.batch_size)
                    q.put_nowait(executor.submit(get_pdbs, train_loader, 1, args.max_protein_length, args.num_examples_per_epoch))
                    p.put_nowait(executor.submit(get_pdbs, valid_loader, 1, args.max_protein_length, args.num_examples_per_epoch))
                reload_c += 1
            for _, batch in enumerate(loader_train):
                start_batch = time.time()
                X, S, mask, lengths, chain_M, residue_idx, mask_self, chain_encoding_all = featurize(batch, device)
                elapsed_featurize = time.time() - start_batch
                optimizer.zero_grad()
                mask_for_loss = mask*chain_M
                
                if args.mixed_precision:
                    with torch.cuda.amp.autocast():
                        log_probs = model(X, S, mask, chain_M, residue_idx, chain_encoding_all)
                        _, loss_av_smoothed = loss_smoothed(S, log_probs, mask_for_loss)
           
                    scaler.scale(loss_av_smoothed).backward()
                     
                    if args.gradient_norm > 0.0:
                        total_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), args.gradient_norm)

                    scaler.step(optimizer)
                    scaler.update()
                else:
                    log_probs = model(X, S, mask, chain_M, residue_idx, chain_encoding_all)
                    _, loss_av_smoothed = loss_smoothed(S, log_probs, mask_for_loss)
                    loss_av_smoothed.backward()

                    if args.gradient_norm > 0.0:
                        total_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), args.gradient_norm)

                    optimizer.step()
                
                loss, loss_av, true_false = loss_nll(S, log_probs, mask_for_loss)
            
                train_sum += torch.sum(loss * mask_for_loss).cpu().data.numpy()
                train_acc += torch.sum(true_false * mask_for_loss).cpu().data.numpy()
                train_weights += torch.sum(mask_for_loss).cpu().data.numpy()

                total_step += 1

            model.eval()
            with torch.no_grad():
                validation_sum, validation_weights = 0., 0.
                validation_acc = 0.
                for _, batch in enumerate(loader_valid):
                    X, S, mask, lengths, chain_M, residue_idx, mask_self, chain_encoding_all = featurize(batch, device)
                    log_probs = model(X, S, mask, chain_M, residue_idx, chain_encoding_all)
                    mask_for_loss = mask*chain_M
                    loss, loss_av, true_false = loss_nll(S, log_probs, mask_for_loss)
                    
                    validation_sum += torch.sum(loss * mask_for_loss).cpu().data.numpy()
                    validation_acc += torch.sum(true_false * mask_for_loss).cpu().data.numpy()
                    validation_weights += torch.sum(mask_for_loss).cpu().data.numpy()
            
            train_loss = train_sum / train_weights
            train_accuracy = train_acc / train_weights
            train_perplexity = np.exp(train_loss)
            validation_loss = validation_sum / validation_weights
            validation_accuracy = validation_acc / validation_weights
            validation_perplexity = np.exp(validation_loss)
            
            train_perplexity_ = np.format_float_positional(np.float32(train_perplexity), unique=False, precision=3)     
            validation_perplexity_ = np.format_float_positional(np.float32(validation_perplexity), unique=False, precision=3)
            train_accuracy_ = np.format_float_positional(np.float32(train_accuracy), unique=False, precision=3)
            validation_accuracy_ = np.format_float_positional(np.float32(validation_accuracy), unique=False, precision=3)
    
            t1 = time.time()
            dt = np.format_float_positional(np.float32(t1-t0), unique=False, precision=1) 
            with open(logfile, 'a') as f:
                f.write(f'epoch: {e+1}, step: {total_step}, time: {dt}, train: {train_perplexity_}, valid: {validation_perplexity_}, train_acc: {train_accuracy_}, valid_acc: {validation_accuracy_}\n')
            print(f'epoch: {e+1}, step: {total_step}, time: {dt}, train: {train_perplexity_}, valid: {validation_perplexity_}, train_acc: {train_accuracy_}, valid_acc: {validation_accuracy_}')
            
            checkpoint_filename_last = base_folder+'model_weights/epoch_last.pt'.format(e+1, total_step)
            torch.save({
                        'epoch': e+1,
                        'step': total_step,
                        'num_edges' : args.num_neighbors,
                        'noise_level': args.backbone_noise,
                        'model_state_dict': model.state_dict(),
                        'optimizer_state_dict': optimizer.optimizer.state_dict(),
                        }, checkpoint_filename_last)

            if (e+1) % args.save_model_every_n_epochs == 0:
                checkpoint_filename = base_folder+'model_weights/epoch{}_step{}.pt'.format(e+1, total_step)
                torch.save({
                        'epoch': e+1,
                        'step': total_step,
                        'num_edges' : args.num_neighbors,
                        'noise_level': args.backbone_noise, 
                        'model_state_dict': model.state_dict(),
                        'optimizer_state_dict': optimizer.optimizer.state_dict(),
                        }, checkpoint_filename)


if __name__ == "__main__":
    argparser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    argparser.add_argument("--path_for_training_data", type=str, default="my_path/pdb_2021aug02", help="path for loading training data") 
    argparser.add_argument("--path_for_outputs", type=str, default="./exp_020", help="path for logs and model weights")
    argparser.add_argument("--previous_checkpoint", type=str, default="", help="path for previous model weights, e.g. file.pt")
    argparser.add_argument("--num_epochs", type=int, default=200, help="number of epochs to train for")
    argparser.add_argument("--save_model_every_n_epochs", type=int, default=10, help="save model weights every n epochs")
    argparser.add_argument("--reload_data_every_n_epochs", type=int, default=2, help="reload training data every n epochs")
    argparser.add_argument("--num_examples_per_epoch", type=int, default=1000000, help="number of training example to load for one epoch")
    argparser.add_argument("--batch_size", type=int, default=10000, help="number of tokens for one batch")
    argparser.add_argument("--max_protein_length", type=int, default=10000, help="maximum length of the protein complext")
    argparser.add_argument("--hidden_dim", type=int, default=128, help="hidden model dimension")
    argparser.add_argument("--num_encoder_layers", type=int, default=3, help="number of encoder layers") 
    argparser.add_argument("--num_decoder_layers", type=int, default=3, help="number of decoder layers")
    argparser.add_argument("--num_neighbors", type=int, default=48, help="number of neighbors for the sparse graph")   
    argparser.add_argument("--dropout", type=float, default=0.1, help="dropout level; 0.0 means no dropout")
    argparser.add_argument("--backbone_noise", type=float, default=0.2, help="amount of noise added to backbone during training")   
    argparser.add_argument("--rescut", type=float, default=3.5, help="PDB resolution cutoff")
    argparser.add_argument("--debug", type=bool, default=False, help="minimal data loading for debugging")
    argparser.add_argument("--gradient_norm", type=float, default=-1.0, help="clip gradient norm, set to negative to omit clipping")
    argparser.add_argument("--mixed_precision", type=bool, default=True, help="train with mixed precision")
 
    args = argparser.parse_args()    
    main(args)