Spaces:
Sleeping
Sleeping
File size: 21,263 Bytes
8c639ec 0291496 8c639ec 53da8f8 8c639ec 22e3abd 8c639ec 22e3abd 8c639ec 22e3abd 8c639ec 22e3abd 8c639ec b405c72 8c639ec 22e3abd 8c639ec 5163c6b cd4cab5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
import gradio as gr
import re
import urllib
import tempfile
from output_helpers import viewer_html, output_html, load_js, get_js
import json
import os
import shlex
import subprocess
from datetime import datetime
from einops import repeat
import torch
from core import data
from core import utils
import models
import sampling
# from draw_samples import draw_and_save_samples, parse_resample_idx_string
print("working directory", os.getcwd())
def draw_and_save_samples(
model,
samples_per_len=8,
lengths=range(50, 512),
save_dir="./",
mode="backbone",
**sampling_kwargs,
):
device = model.device
sample_files = []
if mode == "backbone":
total_sampling_time = 0
for l in lengths:
prot_lens = torch.ones(samples_per_len).long() * l
seq_mask = model.make_seq_mask_for_sampling(prot_lens=prot_lens)
aux = sampling.draw_backbone_samples(
model,
seq_mask=seq_mask,
pdb_save_path=f"{save_dir}/len{format(l, '03d')}_samp",
return_aux=True,
return_sampling_runtime=True,
**sampling_kwargs,
)
total_sampling_time += aux["runtime"]
sample_files+= [f"{save_dir}/len{format(l, '03d')}_samp{i}.pdb" for i in range(samples_per_len)]
return sample_files
elif mode == "allatom":
total_sampling_time = 0
for l in lengths:
prot_lens = torch.ones(samples_per_len).long() * l
seq_mask = model.make_seq_mask_for_sampling(prot_lens=prot_lens)
aux = sampling.draw_allatom_samples(
model,
seq_mask=seq_mask,
pdb_save_path=f"{save_dir}/len{format(l, '03d')}",
return_aux=True,
**sampling_kwargs,
)
total_sampling_time += aux["runtime"]
sample_files+= [f"{save_dir}/len{format(l, '03d')}_samp{i}.pdb" for i in range(samples_per_len)]
return sample_files
def parse_idx_string(idx_str):
spans = idx_str.split(",")
idxs = []
for s in spans:
if "-" in s:
start, stop = s.split("-")
idxs.extend(list(range(int(start), int(stop))))
else:
idxs.append(int(s))
return idxs
def changemode(m):
if (m == "unconditional"):
return gr.update(visible=True), gr.update(visible=False),gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)
else:
return gr.update(visible=False), gr.update(visible=True),gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
def fileselection(val):
if (val == "upload"):
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
else:
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)
def update_structuresel(pdb, radio_val):
pdb_file = tempfile.NamedTemporaryFile(delete=False, suffix=".pdb")
representations = [{
"model": 0,
"chain": "",
"resname": "",
"style": "cartoon",
"color": "whiteCarbon",
"residue_range": "",
"around": 0,
"byres": False,
"visible": False,
}]
if (radio_val == "PDB"):
if (len(pdb) != 4):
return gr.update(open=True),gr.update(), gr.update(value="",visible=False)
else:
urllib.request.urlretrieve(
f"http://files.rcsb.org/download/{pdb.lower()}.pdb1",
pdb_file.name,
)
return gr.update(open=False),gr.update(value=pdb_file.name), gr.update(value=f"""<iframe style="width: 100%; height: 930px" name="result" allow="midi; geolocation; microphone; camera;
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
allow-scripts allow-same-origin allow-popups
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
allowpaymentrequest="" frameborder="0" srcdoc='{viewer_html(pdb_file.name, representations=representations)}'></iframe>""",visible=True)
elif (radio_val == "AFDB2"):
if (re.match("[OPQ][0-9][A-Z0-9]{3}[0-9]|[A-NR-Z][0-9]([A-Z][A-Z0-9]{2}[0-9]){1,2}",pdb) != None):
urllib.request.urlretrieve(
f"https://alphafold.ebi.ac.uk/files/AF-{pdb}-F1-model_v2.pdb",
pdb_file.name
)
return gr.update(open=False),gr.update(value=pdb_file.name), gr.update(value=f"""<iframe style="width: 100%; height: 930px" name="result" allow="midi; geolocation; microphone; camera;
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
allow-scripts allow-same-origin allow-popups
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
allowpaymentrequest="" frameborder="0" srcdoc='{viewer_html(pdb_file.name, representations=representations)}'></iframe>""",visible=True)
else:
return gr.update(open=True), gr.update(value="regex not matched",visible=True)
else:
return gr.update(open=False),gr.update(value=f"{pdb.name}"), gr.update(value=f"""<iframe style="width: 100%; height: 930px" name="result" allow="midi; geolocation; microphone; camera;
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
allow-scripts allow-same-origin allow-popups
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
allowpaymentrequest="" frameborder="0" srcdoc='{viewer_html(pdb.name, representations=representations)}'></iframe>""",visible=True)
from Bio.PDB import PDBParser, cealign
from Bio.PDB.PDBIO import PDBIO
class dotdict(dict):
"""dot.notation access to dictionary attributes"""
__getattr__ = dict.get
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
def protpardelle(path_to_file, m, resample_idx, modeltype, minlen, maxlen, steplen, perlen):
# Set up params, arguments, sampling config
####################
args = {}
args["model_checkpoint"] = "checkpoints" #Path to denoiser model weights and config",
args["mpnnpath"] = "checkpoints/minimpnn_state_dict.pth" #"Path to minimpnn model weights",
args["modeldir"] = None #"Model base directory, ex 'training_logs/other/lemon-shape-51'",
args["modelepoch"] = None #"Model epoch, ex 1000")
args["type"]=modeltype # "Type of model"
if m == "conditional":
args["param"] = None #"Which sampling param to vary"
args["paramval"]=None #"Which param val to use"
args["parampath"]= None # Path to json file with params, either use param/paramval or parampath, not both",
args["perlen"] = int(perlen) #How many samples per sequence length"
args["minlen"] = None #"Minimum sequence length"
args["maxlen"] = None #Maximum sequence length, not inclusive",
args["steplen"] = int(steplen) #"How frequently to select sequence length, for steplen 2, would be 50, 52, 54, etc",
args["num_lens"] = None #"If steplen not provided, how many random lengths to sample at",
args["targetdir"] = "." #"Directory to save results"
args["input_pdb"] = path_to_file # "PDB file to condition on"
args["resample_idxs"] = resample_idx[1:-1] # "Indices from PDB file to resample. Zero-indexed, comma-delimited, can use dashes, eg 0,2-5,7"
else:
args["param"] = None #"Which sampling param to vary"
args["paramval"]=None #"Which param val to use"
args["parampath"]= None # Path to json file with params, either use param/paramval or parampath, not both",
args["perlen"] = int(perlen) #How many samples per sequence length"
args["minlen"] = int(minlen) #"Minimum sequence length"
args["maxlen"] = int(maxlen)+1 #Maximum sequence length
args["steplen"] = int(steplen) #"How frequently to select sequence length, for steplen 2, would be 50, 52, 54, etc",
args["num_lens"] = None #"If steplen not provided, how many random lengths to sample at",
args["targetdir"] = "." #"Directory to save results"
args["resample_idxs"] = None
args = dotdict(args)
is_test_run = False
seed = 0
samples_per_len = args.perlen
min_len = args.minlen
max_len = args.maxlen
len_step_size = args.steplen
device = "cuda:0"
# setting default sampling config
if args.type == "backbone":
sampling_config = sampling.default_backbone_sampling_config()
elif args.type == "allatom":
sampling_config = sampling.default_allatom_sampling_config()
sampling_kwargs = vars(sampling_config)
# Parse conditioning inputs
input_pdb_len = None
if args.input_pdb:
input_feats = utils.load_feats_from_pdb(args.input_pdb, protein_only=True)
input_pdb_len = input_feats["aatype"].shape[0]
if args.resample_idxs:
print(
f"Warning: when sampling conditionally, the input pdb length ({input_pdb_len} residues) is used automatically for the sampling lengths."
)
resample_idxs = parse_idx_string(args.resample_idxs)
else:
resample_idxs = list(range(input_pdb_len))
cond_idxs = [i for i in range(input_pdb_len) if i not in resample_idxs]
to_batch_size = lambda x: repeat(x, "... -> b ...", b=samples_per_len).to(
device
)
# For unconditional model, center coords on whole structure
centered_coords = data.apply_random_se3(
input_feats["atom_positions"],
atom_mask=input_feats["atom_mask"],
translation_scale=0.0,
)
cond_kwargs = {}
cond_kwargs["gt_coords"] = to_batch_size(centered_coords)
cond_kwargs["gt_cond_atom_mask"] = to_batch_size(input_feats["atom_mask"])
cond_kwargs["gt_cond_atom_mask"][:, resample_idxs] = 0
cond_kwargs["gt_aatype"] = to_batch_size(input_feats["aatype"])
cond_kwargs["gt_cond_seq_mask"] = torch.zeros_like(cond_kwargs["gt_aatype"])
cond_kwargs["gt_cond_seq_mask"][:, cond_idxs] = 1
sampling_kwargs.update(cond_kwargs)
print("input_pdb_len", input_pdb_len)
# Determine lengths to sample at
if min_len is not None and max_len is not None:
if len_step_size is not None:
sampling_lengths = range(min_len, max_len, len_step_size)
else:
sampling_lengths = list(
torch.randint(min_len, max_len, size=(args.num_lens,))
)
elif input_pdb_len is not None:
sampling_lengths = [input_pdb_len]
else:
raise Exception("Need to provide a set of protein lengths or an input pdb.")
total_num_samples = len(list(sampling_lengths)) * samples_per_len
model_directory = args.modeldir
epoch = args.modelepoch
base_dir = args.targetdir
date_string = datetime.now().strftime("%y-%m-%d-%H-%M-%S")
if is_test_run:
date_string = f"test-{date_string}"
# Update sampling config with arguments
if args.param:
var_param = args.param
var_value = args.paramval
sampling_kwargs[var_param] = (
None
if var_value == "None"
else int(var_value)
if var_param == "n_steps"
else float(var_value)
)
elif args.parampath:
with open(args.parampath) as f:
var_params = json.loads(f.read())
sampling_kwargs.update(var_params)
# this is only used for the readme, keep s_min and s_max as params instead of struct_noise_schedule
sampling_kwargs_readme = list(sampling_kwargs.items())
print("Base directory:", base_dir)
save_dir = f"{base_dir}/samples/{date_string}"
save_init_dir = f"{base_dir}/samples_inits/{date_string}"
# make dirs if do not exist
if not os.path.exists(save_dir):
subprocess.run(shlex.split(f"mkdir -p {save_dir}"))
if not os.path.exists(save_init_dir):
subprocess.run(shlex.split(f"mkdir -p {save_init_dir}"))
print("Samples saved to:", save_dir)
torch.manual_seed(seed)
# Load model
if args.type == "backbone":
if args.model_checkpoint:
checkpoint = f"{args.model_checkpoint}/backbone_state_dict.pth"
cfg_path = f"{args.model_checkpoint}/backbone_pretrained.yml"
else:
checkpoint = (
f"{model_directory}/checkpoints/epoch{epoch}_training_state.pth"
)
cfg_path = f"{model_directory}/configs/backbone.yml"
config = utils.load_config(cfg_path)
weights = torch.load(checkpoint, map_location=device)["model_state_dict"]
model = models.Protpardelle(config, device=device)
model.load_state_dict(weights)
model.to(device)
model.eval()
model.device = device
elif args.type == "allatom":
if args.model_checkpoint:
checkpoint = f"{args.model_checkpoint}/allatom_state_dict.pth"
cfg_path = f"{args.model_checkpoint}/allatom_pretrained.yml"
else:
checkpoint = (
f"{model_directory}/checkpoints/epoch{epoch}_training_state.pth"
)
cfg_path = f"{model_directory}/configs/allatom.yml"
config = utils.load_config(cfg_path)
weights = torch.load(checkpoint, map_location=device)["model_state_dict"]
model = models.Protpardelle(config, device=device)
model.load_state_dict(weights)
model.load_minimpnn(args.mpnnpath)
model.to(device)
model.eval()
model.device = device
if config.train.home_dir == '':
config.train.home_dir = os.getcwd()
with open(save_dir + "/run_parameters.txt", "w") as f:
f.write(f"Sampling run for {date_string}\n")
f.write(f"Random seed {seed}\n")
f.write(f"Model checkpoint: {checkpoint}\n")
f.write(
f"{samples_per_len} samples per length from {min_len}:{max_len}:{len_step_size}\n"
)
f.write("Sampling params:\n")
for k, v in sampling_kwargs_readme:
f.write(f"{k}\t{v}\n")
print(f"Model loaded from {checkpoint}")
print(f"Beginning sampling for {date_string}...")
# Draw samples
output_files = draw_and_save_samples(
model,
samples_per_len=samples_per_len,
lengths=sampling_lengths,
save_dir=save_dir,
mode=args.type,
**sampling_kwargs,
)
return output_files
def api_predict(pdb_content,m, resample_idx, modeltype, minlen, maxlen, steplen, perlen):
if (m == "conditional"):
tempPDB = tempfile.NamedTemporaryFile(delete=False, suffix=".pdb")
tempPDB.write(pdb_content.encode())
tempPDB.close()
path_to_file = tempPDB.name
else:
path_to_file = None
try:
designs = protpardelle(path_to_file, m, resample_idx, modeltype, minlen, maxlen, steplen, perlen)
except Exception as e:
print(e)
raise gr.Error(e)
# load each design as string
design_str = []
for d in designs:
with open(d, "r") as f:
design_str.append(f.read())
results = list(zip(designs, design_str))
return json.dumps(results)
def predict(pdb_radio, path_to_file,m, resample_idx, modeltype, minlen, maxlen, steplen, perlen):
print("running predict")
try:
designs = protpardelle(path_to_file, m, resample_idx, modeltype, minlen, maxlen, steplen, perlen)
except Exception as e:
print(e)
raise gr.Error(e)
return gr.update(open=True), gr.update(value="something went wrong")
parser = PDBParser()
aligner = cealign.CEAligner()
io=PDBIO()
aligned_designs = []
metrics = []
if (m == "conditional"):
ref = parser.get_structure("ref", path_to_file)
aligner.set_reference(ref)
for d in designs:
design = parser.get_structure("design", d)
aligner.align(design)
metrics.append({"rms": f"{aligner.rms:.1f}", "len": len(list(design[0].get_residues()))})
io.set_structure(design)
io.save(d.replace(".pdb", f"_al.pdb"))
aligned_designs.append(d.replace(".pdb", f"_al.pdb"))
else:
for d in designs:
design = parser.get_structure("design", d)
metrics.append({"len": len(list(design[0].get_residues()))})
aligned_designs = designs
output_view = f"""<iframe style="width: 100%; height: 900px" name="result" allow="midi; geolocation; microphone; camera;
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
allow-scripts allow-same-origin allow-popups
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
allowpaymentrequest="" frameborder="0" srcdoc='{output_html(path_to_file, aligned_designs, metrics, resample_idx=resample_idx, mode=m)}'></iframe>"""
return gr.update(open=False), gr.update(value=output_view,visible=True)
protpardelleDemo = gr.Blocks()
with protpardelleDemo:
gr.Markdown("# Protpardelle")
gr.Markdown(""" An all-atom protein generative model
Alexander E. Chu, Lucy Cheng, Gina El Nesr, Minkai Xu, Po-Ssu Huang
doi: https://doi.org/10.1101/2023.05.24.542194""")
with gr.Accordion(label="Input options", open=True) as input_accordion:
model = gr.Dropdown(["backbone", "allatom"], value="allatom", label="What to sample?")
m = gr.Radio(['unconditional','conditional'],value="unconditional", label="Choose a Mode")
#unconditional
with gr.Group(visible=True) as uncond:
gr.Markdown("Unconditional Sampling")
# length = gr.Slider(minimum=0, maximum=200, step=1, value=50, label="length")
# param = gr.Dropdown(["length", "param"], value="length", label="Which sampling param to vary?")
# paramval = gr.Dropdown(["nsteps"], label="paramval", info="Which param val to use?")
#conditional
with gr.Group(visible=False) as cond:
with gr.Accordion(label="Structure to condition on", open=True) as input_accordion:
pdb_radio = gr.Radio(['PDB','AF2 EBI DB', 'upload'],value="PDB", label="source of the structure")
pdbcode = gr.Textbox(label="Uniprot code to be retrieved Alphafold2 Database", visible=True)
pdbfile = gr.File(label="PDB File", visible=False)
btn_load = gr.Button("Load PDB")
pdb_radio.change(fileselection, inputs=pdb_radio, outputs=[pdbcode, pdbfile, btn_load])
pdb_html = gr.HTML("", visible=False)
path_to_file = gr.Textbox(label="Path to file", visible=False)
resample_idxs = gr.Textbox(label="Cond Idxs", interactive=False, info="Zero indexed list of indices to condition on, select in sequence viewer above")
btn_load.click(update_structuresel, inputs=[pdbcode, pdb_radio], outputs=[input_accordion,path_to_file,pdb_html])
pdbfile.change(update_structuresel, inputs=[pdbfile,pdb_radio], outputs=[input_accordion,path_to_file,pdb_html])
with gr.Accordion(label="Sizes", open=True) as size_uncond:
with gr.Row():
minlen = gr.Slider(minimum=2, maximum=200,value=50, step=1, label="minlen", info="Minimum sequence length")
maxlen = gr.Slider(minimum=3, maximum=200,value=60, step=1, label="maxlen", info="Maximum sequence length")
steplen = gr.Slider(minimum=1, maximum=50, step=1, value=1, label="steplen", info="How frequently to select sequence length?" )
perlen = gr.Slider(minimum=1, maximum=200, step=1, value=2, label="perlen", info="How many samples per sequence length?")
btn_conditional = gr.Button("Run conditional",visible=False)
btn_unconditional = gr.Button("Run unconditional")
m.change(changemode, inputs=m, outputs=[uncond, cond, btn_unconditional, btn_conditional, size_uncond])
out = gr.HTML("", visible=True)
btn_unconditional.click(predict, inputs=[pdb_radio, path_to_file,m, resample_idxs, model, minlen, maxlen, steplen, perlen], outputs=[input_accordion, out])
btn_conditional.click(fn=None,
inputs=[resample_idxs],
outputs=[resample_idxs],
_js=get_js
) #
out_text = gr.Textbox(label="Output", visible=False)
#hidden button for named api route
pdb_content = gr.Textbox(label="PDB Content", visible=False)
btn_api = gr.Button("Run API",visible=False)
btn_api.click(api_predict, inputs=[pdb_content,m, resample_idxs, model, minlen, maxlen, steplen, perlen], outputs=[out_text], api_name="protpardelle")
resample_idxs.change(predict, inputs=[pdb_radio, path_to_file,m, resample_idxs, model, minlen, maxlen, steplen, perlen], outputs=[input_accordion, out])
protpardelleDemo.load(None, None, None, _js=load_js)
protpardelleDemo.queue()
protpardelleDemo.launch(allowed_paths=['samples'])
|