File size: 21,027 Bytes
8c639ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
import gradio as gr

import re 
import urllib

import tempfile

from output_helpers import viewer_html, output_html, load_js, get_js



import json
import os
import shlex
import subprocess
from datetime import datetime

from einops import repeat
import torch

from core import data
from core import utils
import models
import sampling

# from draw_samples import draw_and_save_samples, parse_resample_idx_string



def draw_and_save_samples(
    model,
    samples_per_len=8,
    lengths=range(50, 512),
    save_dir="./",
    mode="backbone",
    **sampling_kwargs,
):
    device = model.device
    sample_files = []
    if mode == "backbone":
        total_sampling_time = 0
        for l in lengths:
            prot_lens = torch.ones(samples_per_len).long() * l
            seq_mask = model.make_seq_mask_for_sampling(prot_lens=prot_lens)
            aux = sampling.draw_backbone_samples(
                model,
                seq_mask=seq_mask,
                pdb_save_path=f"{save_dir}/len{format(l, '03d')}_samp",
                return_aux=True,
                return_sampling_runtime=True,
                **sampling_kwargs,
            )
            total_sampling_time += aux["runtime"]
            sample_files+= [f"{save_dir}/len{format(l, '03d')}_samp{i}.pdb" for i in range(samples_per_len)]
        return sample_files
    elif mode == "allatom":
        total_sampling_time = 0
        for l in lengths:
            prot_lens = torch.ones(samples_per_len).long() * l
            seq_mask = model.make_seq_mask_for_sampling(prot_lens=prot_lens)
            aux = sampling.draw_allatom_samples(
                model,
                seq_mask=seq_mask,
                pdb_save_path=f"{save_dir}/len{format(l, '03d')}",
                return_aux=True,
                **sampling_kwargs,
            )
            total_sampling_time += aux["runtime"]
            sample_files+= [f"{save_dir}/len{format(l, '03d')}_samp{i}.pdb" for i in range(samples_per_len)]
        return sample_files


def parse_idx_string(idx_str):
    spans = idx_str.split(",")
    idxs = []
    for s in spans:
        if "-" in s:
            start, stop = s.split("-")
            idxs.extend(list(range(int(start), int(stop))))
        else:
            idxs.append(int(s))
    return idxs

def changemode(m):
    if (m == "unconditional"):
        return gr.update(visible=True), gr.update(visible=False),gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)
    else:
        return gr.update(visible=False), gr.update(visible=True),gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)

def fileselection(val):
    if (val == "upload"):
        return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
    else:
        return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)

def update_structuresel(pdb, radio_val):
    pdb_file = tempfile.NamedTemporaryFile(delete=False, suffix=".pdb")


    representations = [{
        "model": 0,
        "chain": "",
        "resname": "",
        "style": "cartoon",
        "color": "whiteCarbon",
        "residue_range": "",
        "around": 0,
        "byres": False,
        "visible": False,
      }]
    

    if (radio_val == "PDB"):
        if (len(pdb) != 4):
            return gr.update(open=True),gr.update(), gr.update(value="",visible=False)
        else:
            urllib.request.urlretrieve(
                    f"http://files.rcsb.org/download/{pdb.lower()}.pdb1",
                    pdb_file.name,
                )
            return gr.update(open=False),gr.update(value=pdb_file.name), gr.update(value=f"""<iframe style="width: 100%; height: 930px" name="result" allow="midi; geolocation; microphone; camera; 
    display-capture; encrypted-media;" sandbox="allow-modals allow-forms 
    allow-scripts allow-same-origin allow-popups 
    allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" 
    allowpaymentrequest="" frameborder="0" srcdoc='{viewer_html(pdb_file.name, representations=representations)}'></iframe>""",visible=True)
    elif (radio_val == "AFDB2"):
        if (re.match("[OPQ][0-9][A-Z0-9]{3}[0-9]|[A-NR-Z][0-9]([A-Z][A-Z0-9]{2}[0-9]){1,2}",pdb) != None):
            urllib.request.urlretrieve(
                    f"https://alphafold.ebi.ac.uk/files/AF-{pdb}-F1-model_v2.pdb",
                    pdb_file.name
                )
            return gr.update(open=False),gr.update(value=pdb_file.name), gr.update(value=f"""<iframe style="width: 100%; height: 930px" name="result" allow="midi; geolocation; microphone; camera; 
    display-capture; encrypted-media;" sandbox="allow-modals allow-forms 
    allow-scripts allow-same-origin allow-popups 
    allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" 
    allowpaymentrequest="" frameborder="0" srcdoc='{viewer_html(pdb_file.name, representations=representations)}'></iframe>""",visible=True)
        else:
            return gr.update(open=True), gr.update(value="regex not matched",visible=True)
    else:
        return gr.update(open=False),gr.update(value=f"{pdb.name}"), gr.update(value=f"""<iframe style="width: 100%; height: 930px" name="result" allow="midi; geolocation; microphone; camera; 
    display-capture; encrypted-media;" sandbox="allow-modals allow-forms 
    allow-scripts allow-same-origin allow-popups 
    allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" 
    allowpaymentrequest="" frameborder="0" srcdoc='{viewer_html(pdb.name, representations=representations)}'></iframe>""",visible=True)

from Bio.PDB import PDBParser, cealign
from Bio.PDB.PDBIO import PDBIO

class dotdict(dict):
    """dot.notation access to dictionary attributes"""
    __getattr__ = dict.get
    __setattr__ = dict.__setitem__
    __delattr__ = dict.__delitem__

def protpardelle(path_to_file, m, resample_idx,  modeltype, minlen, maxlen, steplen, perlen):
        # Set up params, arguments, sampling config
    ####################
    
    args = {}
    args["model_checkpoint"] = "checkpoints" #Path to denoiser model weights and config",
    
    args["mpnnpath"] = "checkpoints/minimpnn_state_dict.pth" #"Path to minimpnn model weights",
        
    args["modeldir"] = None #"Model base directory, ex 'training_logs/other/lemon-shape-51'",
    
    args["modelepoch"] = None #"Model epoch, ex 1000")


    args["type"]=modeltype # "Type of model"
    if m == "conditional":
        args["param"] = None #"Which sampling param to vary"
        args["paramval"]=None #"Which param val to use"
        args["parampath"]= None # Path to json file with params, either use param/paramval or parampath, not both",
        args["perlen"] = int(perlen) #How many samples per sequence length"
        args["minlen"] = None #"Minimum sequence length"
        args["maxlen"] = None #Maximum sequence length, not inclusive",
        args["steplen"] = int(steplen) #"How frequently to select sequence length, for steplen 2, would be 50, 52, 54, etc",
        args["num_lens"] = None #"If steplen not provided, how many random lengths to sample at",
        args["targetdir"] = "." #"Directory to save results"
        args["input_pdb"] = path_to_file # "PDB file to condition on"
        args["resample_idxs"] = resample_idx[1:-1] # "Indices from PDB file to resample. Zero-indexed, comma-delimited, can use dashes, eg 0,2-5,7"
    else:
        args["param"] = "n_steps" #"Which sampling param to vary"
        args["paramval"]="100" #"Which param val to use"
        args["parampath"]= None # Path to json file with params, either use param/paramval or parampath, not both",
        args["perlen"] = int(perlen) #How many samples per sequence length"
        args["minlen"] = int(minlen) #"Minimum sequence length"
        args["maxlen"] = int(maxlen)+1 #Maximum sequence length
        args["steplen"] = int(steplen) #"How frequently to select sequence length, for steplen 2, would be 50, 52, 54, etc",
        args["num_lens"] = None #"If steplen not provided, how many random lengths to sample at",
        args["targetdir"] = "." #"Directory to save results"
        args["resample_idxs"] = None

    args = dotdict(args)
    is_test_run = False
    seed = 0
    samples_per_len = args.perlen
    min_len = args.minlen
    max_len = args.maxlen
    len_step_size = args.steplen
    device = "cuda:0"

    # setting default sampling config
    if args.type == "backbone":
        sampling_config = sampling.default_backbone_sampling_config()
    elif args.type == "allatom":
        sampling_config = sampling.default_allatom_sampling_config()

    sampling_kwargs = vars(sampling_config)

    # Parse conditioning inputs
    input_pdb_len = None
    if args.input_pdb:
        input_feats = utils.load_feats_from_pdb(args.input_pdb, protein_only=True)
        input_pdb_len = input_feats["aatype"].shape[0]
        if args.resample_idxs:
            print(
                f"Warning: when sampling conditionally, the input pdb length ({input_pdb_len} residues) is used automatically for the sampling lengths."
            )
            resample_idxs = parse_idx_string(args.resample_idxs)
        else:
            resample_idxs = list(range(input_pdb_len))
        cond_idxs = [i for i in range(input_pdb_len) if i not in resample_idxs]
        to_batch_size = lambda x: repeat(x, "... -> b ...", b=samples_per_len).to(
            device
        )

        # For unconditional model, center coords on whole structure
        centered_coords = data.apply_random_se3(
            input_feats["atom_positions"],
            atom_mask=input_feats["atom_mask"],
            translation_scale=0.0,
        )
        cond_kwargs = {}
        cond_kwargs["gt_coords"] = to_batch_size(centered_coords)
        cond_kwargs["gt_cond_atom_mask"] = to_batch_size(input_feats["atom_mask"])
        cond_kwargs["gt_cond_atom_mask"][:, resample_idxs] = 0
        cond_kwargs["gt_aatype"] = to_batch_size(input_feats["aatype"])
        cond_kwargs["gt_cond_seq_mask"] = torch.zeros_like(cond_kwargs["gt_aatype"])
        cond_kwargs["gt_cond_seq_mask"][:, cond_idxs] = 1
        sampling_kwargs.update(cond_kwargs)

    print("input_pdb_len", input_pdb_len)

    # Determine lengths to sample at
    if min_len is not None and max_len is not None:
        if len_step_size is not None:
            sampling_lengths = range(min_len, max_len, len_step_size)
        else:
            sampling_lengths = list(
                torch.randint(min_len, max_len, size=(args.num_lens,))
            )
    elif input_pdb_len is not None:
        sampling_lengths = [input_pdb_len]
    else:
        raise Exception("Need to provide a set of protein lengths or an input pdb.")

    total_num_samples = len(list(sampling_lengths)) * samples_per_len

    model_directory = args.modeldir
    epoch = args.modelepoch
    base_dir = args.targetdir

    date_string = datetime.now().strftime("%y-%m-%d-%H-%M-%S")
    if is_test_run:
        date_string = f"test-{date_string}"

    # Update sampling config with arguments
    if args.param:
        var_param = args.param
        var_value = args.paramval
        sampling_kwargs[var_param] = (
            None
            if var_value == "None"
            else int(var_value)
            if var_param == "n_steps"
            else float(var_value)
        )
    elif args.parampath:
        with open(args.parampath) as f:
            var_params = json.loads(f.read())
            sampling_kwargs.update(var_params)

    # this is only used for the readme, keep s_min and s_max as params instead of struct_noise_schedule
    sampling_kwargs_readme = list(sampling_kwargs.items())

    print("Base directory:", base_dir)
    save_dir = f"{base_dir}/samples/{date_string}"
    save_init_dir = f"{base_dir}/samples_inits/{date_string}"

    # make dirs if do not exist
    if not os.path.exists(save_dir):
        subprocess.run(shlex.split(f"mkdir -p {save_dir}"))
    
    if not os.path.exists(save_init_dir):
        subprocess.run(shlex.split(f"mkdir -p {save_init_dir}"))

    print("Samples saved to:", save_dir)
    torch.manual_seed(seed)

    # Load model
    if args.type == "backbone":
        if args.model_checkpoint:
            checkpoint = f"{args.model_checkpoint}/backbone_state_dict.pth"
            cfg_path = f"{args.model_checkpoint}/backbone.yml"
        else:
            checkpoint = (
                f"{model_directory}/checkpoints/epoch{epoch}_training_state.pth"
            )
            cfg_path = f"{model_directory}/configs/backbone.yml"
        cfg = utils.load_config(cfg_path)
        weights = torch.load(checkpoint, map_location=device)["model_state_dict"]
        model = models.Protpardelle(cfg, device=device)
        model.load_state_dict(weights)
        model.to(device)
        model.eval()
        model.device = device
    elif args.type == "allatom":
        if args.model_checkpoint:
            checkpoint = f"{args.model_checkpoint}/allatom_state_dict.pth"
            cfg_path = f"{args.model_checkpoint}/allatom.yml"
        else:
            checkpoint = (
                f"{model_directory}/checkpoints/epoch{epoch}_training_state.pth"
            )
            cfg_path = f"{model_directory}/configs/allatom.yml"
        config = utils.load_config(cfg_path)
        weights = torch.load(checkpoint, map_location=device)["model_state_dict"]
        model = models.Protpardelle(config, device=device)
        model.load_state_dict(weights)
        model.load_minimpnn(args.mpnnpath)
        model.to(device)
        model.eval()
        model.device = device

    with open(save_dir + "/run_parameters.txt", "w") as f:
        f.write(f"Sampling run for {date_string}\n")
        f.write(f"Random seed {seed}\n")
        f.write(f"Model checkpoint: {checkpoint}\n")
        f.write(
            f"{samples_per_len} samples per length from {min_len}:{max_len}:{len_step_size}\n"
        )
        f.write("Sampling params:\n")
        for k, v in sampling_kwargs_readme:
            f.write(f"{k}\t{v}\n")

    # Draw samples
    output_files = draw_and_save_samples(
        model,
        samples_per_len=samples_per_len,
        lengths=sampling_lengths,
        save_dir=save_dir,
        mode=args.type,
        **sampling_kwargs,
    )

    return output_files


def api_predict(pdb_content,m, resample_idx,  modeltype, minlen, maxlen, steplen, perlen):
    
    if (m == "conditional"):
        tempPDB = tempfile.NamedTemporaryFile(delete=False, suffix=".pdb")
        tempPDB.write(pdb_content.encode())
        tempPDB.close()

        path_to_file = tempPDB.name
    else:
        path_to_file = None

    try:
        designs = protpardelle(path_to_file, m, resample_idx, modeltype, minlen, maxlen, steplen, perlen)
    except Exception as e:
        print(e)
        
        raise gr.Error(e)
    
    # load each design as string
    design_str = []
    for d in designs:
        with open(d, "r") as f:
            design_str.append(f.read())

    results = list(zip(designs, design_str))
    return json.dumps(results)
    
def predict(pdb_radio, path_to_file,m, resample_idx,  modeltype, minlen, maxlen, steplen, perlen):
    print("running predict")
    try:
        designs = protpardelle(path_to_file, m, resample_idx, modeltype, minlen, maxlen, steplen, perlen)
    except Exception as e:
        print(e)
        
        raise gr.Error(e)

        return gr.update(open=True), gr.update(value="something went wrong")

    parser = PDBParser()
    aligner = cealign.CEAligner()
    io=PDBIO()
    aligned_designs = []
    metrics = []
    if (m == "conditional"):
        ref = parser.get_structure("ref", path_to_file)
        aligner.set_reference(ref)
       
        for d in designs:
            design = parser.get_structure("design", d)
            aligner.align(design)
            metrics.append({"rms": f"{aligner.rms:.1f}", "len": len(list(design[0].get_residues()))})
            io.set_structure(design)
            io.save(d.replace(".pdb", f"_al.pdb"))
            aligned_designs.append(d.replace(".pdb", f"_al.pdb"))
    else:
        for d in designs:
            design = parser.get_structure("design", d)
            metrics.append({"len": len(list(design[0].get_residues()))})
        aligned_designs = designs

    output_view = f"""<iframe style="width: 100%; height: 900px" name="result" allow="midi; geolocation; microphone; camera; 
    display-capture; encrypted-media;" sandbox="allow-modals allow-forms 
    allow-scripts allow-same-origin allow-popups 
    allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" 
    allowpaymentrequest="" frameborder="0" srcdoc='{output_html(path_to_file, aligned_designs, metrics, resample_idx=resample_idx, mode=m)}'></iframe>"""
    
    return gr.update(open=False), gr.update(value=output_view,visible=True)


protpardelleDemo = gr.Blocks()

with protpardelleDemo:
    gr.Markdown("# Protpardelle")
    gr.Markdown(""" An all-atom protein generative model 
                Alexander E. Chu, Lucy Cheng, Gina El Nesr, Minkai Xu,  Po-Ssu Huang
doi: https://doi.org/10.1101/2023.05.24.542194""")
    
    with gr.Accordion(label="Input options", open=True) as input_accordion:
        model = gr.Dropdown(["backbone", "allatom"], value="allatom", label="What to sample?")
        
        m = gr.Radio(['unconditional','conditional'],value="unconditional", label="Choose a Mode")
        

        #unconditional
        with gr.Group(visible=True) as uncond:
            gr.Markdown("Unconditional Sampling")
            # length = gr.Slider(minimum=0, maximum=200, step=1, value=50, label="length")
            # param = gr.Dropdown(["length", "param"], value="length", label="Which sampling param to vary?")
            # paramval = gr.Dropdown(["nsteps"], label="paramval", info="Which param val to use?")
        
        #conditional
        with gr.Group(visible=False) as cond:
            with gr.Accordion(label="Structure to condition on", open=True) as input_accordion:
                pdb_radio = gr.Radio(['PDB','AF2 EBI DB', 'upload'],value="PDB", label="source of the structure")
                pdbcode = gr.Textbox(label="Uniprot code to be retrieved Alphafold2 Database", visible=True)
                pdbfile = gr.File(label="PDB File", visible=False)
                btn_load = gr.Button("Load PDB")
                pdb_radio.change(fileselection, inputs=pdb_radio, outputs=[pdbcode, pdbfile, btn_load])
                
                     
                
            pdb_html = gr.HTML("", visible=False)   


            path_to_file = gr.Textbox(label="Path to file", visible=False)
            resample_idxs = gr.Textbox(label="Cond Idxs", interactive=False, info="Zero indexed list of indices to condition on, select in sequence viewer above")
            btn_load.click(update_structuresel, inputs=[pdbcode, pdb_radio], outputs=[input_accordion,path_to_file,pdb_html])
            pdbfile.change(update_structuresel, inputs=[pdbfile,pdb_radio], outputs=[input_accordion,path_to_file,pdb_html])
        
        with gr.Accordion(label="Sizes", open=True) as size_uncond:
            with gr.Row():
                minlen = gr.Slider(minimum=2, maximum=200,value=50, step=1, label="minlen", info="Minimum sequence length")
                maxlen = gr.Slider(minimum=3, maximum=200,value=60, step=1, label="maxlen", info="Maximum sequence length")
                steplen = gr.Slider(minimum=1, maximum=50, step=1, value=1, label="steplen", info="How frequently to select sequence length?" )
        perlen = gr.Slider(minimum=1, maximum=200, step=1, value=2, label="perlen", info="How many samples per sequence length?")

    
    btn_conditional = gr.Button("Run conditional",visible=False)
    btn_unconditional = gr.Button("Run unconditional")
    m.change(changemode, inputs=m, outputs=[uncond, cond, btn_unconditional, btn_conditional, size_uncond])
    out = gr.HTML("", visible=True)

    btn_unconditional.click(predict, inputs=[pdb_radio, path_to_file,m, resample_idxs, model, minlen, maxlen, steplen, perlen], outputs=[input_accordion, out])

    btn_conditional.click(fn=None,
                     inputs=[resample_idxs],
                     outputs=[resample_idxs],
                     _js=get_js
                     ) #
    out_text = gr.Textbox(label="Output", visible=False)
    #hidden button for named api route
    pdb_content = gr.Textbox(label="PDB Content", visible=False)
    btn_api = gr.Button("Run API",visible=False)
    btn_api.click(api_predict, inputs=[pdb_content,m, resample_idxs, model, minlen, maxlen, steplen, perlen], outputs=[out_text], api_name="protpardelle")

    resample_idxs.change(predict, inputs=[pdb_radio, path_to_file,m, resample_idxs, model, minlen, maxlen, steplen, perlen], outputs=[input_accordion, out])
    protpardelleDemo.load(None, None, None, _js=load_js)
protpardelleDemo.queue()
protpardelleDemo.launch(allowed_paths=['samples'], share=True)