protpardelle / core /protein.py
Simon Duerr
webapp
8c639ec
raw
history blame
12.2 kB
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Protein data type.
Adapted from original code by alexechu.
"""
import dataclasses
import io
from typing import Any, Mapping, Optional
from core import residue_constants
from Bio.PDB import PDBParser
import numpy as np
FeatureDict = Mapping[str, np.ndarray]
ModelOutput = Mapping[str, Any] # Is a nested dict.
# Complete sequence of chain IDs supported by the PDB format.
PDB_CHAIN_IDS = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
PDB_MAX_CHAINS = len(PDB_CHAIN_IDS) # := 62.
@dataclasses.dataclass(frozen=True)
class Protein:
"""Protein structure representation."""
# Cartesian coordinates of atoms in angstroms. The atom types correspond to
# residue_constants.atom_types, i.e. the first three are N, CA, CB.
atom_positions: np.ndarray # [num_res, num_atom_type, 3]
# Amino-acid type for each residue represented as an integer between 0 and
# 20, where 20 is 'X'.
aatype: np.ndarray # [num_res]
# Binary float mask to indicate presence of a particular atom. 1.0 if an atom
# is present and 0.0 if not. This should be used for loss masking.
atom_mask: np.ndarray # [num_res, num_atom_type]
# Residue index as used in PDB. It is not necessarily continuous or 0-indexed.
residue_index: np.ndarray # [num_res]
# 0-indexed number corresponding to the chain in the protein that this residue
# belongs to.
chain_index: np.ndarray # [num_res]
# B-factors, or temperature factors, of each residue (in sq. angstroms units),
# representing the displacement of the residue from its ground truth mean
# value.
b_factors: np.ndarray # [num_res, num_atom_type]
def __post_init__(self):
if len(np.unique(self.chain_index)) > PDB_MAX_CHAINS:
raise ValueError(
f"Cannot build an instance with more than {PDB_MAX_CHAINS} chains "
"because these cannot be written to PDB format."
)
def from_pdb_string(
pdb_str: str, chain_id: Optional[str] = None, protein_only: bool = False
) -> Protein:
"""Takes a PDB string and constructs a Protein object.
WARNING: All non-standard residue types will be converted into UNK. All
non-standard atoms will be ignored.
Args:
pdb_str: The contents of the pdb file
chain_id: If chain_id is specified (e.g. A), then only that chain
is parsed. Otherwise all chains are parsed.
Returns:
A new `Protein` parsed from the pdb contents.
"""
pdb_fh = io.StringIO(pdb_str)
parser = PDBParser(QUIET=True)
structure = parser.get_structure("none", pdb_fh)
models = list(structure.get_models())
if len(models) != 1:
raise ValueError(
f"Only single model PDBs are supported. Found {len(models)} models."
)
model = models[0]
atom_positions = []
aatype = []
atom_mask = []
residue_index = []
chain_ids = []
b_factors = []
for chain in model:
if chain_id is not None and chain.id != chain_id:
continue
for res in chain:
if protein_only and res.id[0] != " ":
continue
if res.id[2] != " ":
pass
# raise ValueError(
# f"PDB contains an insertion code at chain {chain.id} and residue "
# f"index {res.id[1]}. These are not supported."
# )
res_shortname = residue_constants.restype_3to1.get(res.resname, "X")
restype_idx = residue_constants.restype_order.get(
res_shortname, residue_constants.restype_num
)
pos = np.zeros((residue_constants.atom_type_num, 3))
mask = np.zeros((residue_constants.atom_type_num,))
res_b_factors = np.zeros((residue_constants.atom_type_num,))
for atom in res:
if atom.name not in residue_constants.atom_types:
continue
pos[residue_constants.atom_order[atom.name]] = atom.coord
mask[residue_constants.atom_order[atom.name]] = 1.0
res_b_factors[residue_constants.atom_order[atom.name]] = atom.bfactor
if np.sum(mask) < 0.5:
# If no known atom positions are reported for the residue then skip it.
continue
aatype.append(restype_idx)
atom_positions.append(pos)
atom_mask.append(mask)
residue_index.append(res.id[1])
chain_ids.append(chain.id)
b_factors.append(res_b_factors)
# Chain IDs are usually characters so map these to ints.
unique_chain_ids = np.unique(chain_ids)
chain_id_mapping = {cid: n for n, cid in enumerate(unique_chain_ids)}
chain_index = np.array([chain_id_mapping[cid] for cid in chain_ids])
return Protein(
atom_positions=np.array(atom_positions),
atom_mask=np.array(atom_mask),
aatype=np.array(aatype),
residue_index=np.array(residue_index),
chain_index=chain_index,
b_factors=np.array(b_factors),
)
def _chain_end(atom_index, end_resname, chain_name, residue_index) -> str:
chain_end = "TER"
return (
f"{chain_end:<6}{atom_index:>5} {end_resname:>3} "
f"{chain_name:>1}{residue_index:>4}"
)
def are_atoms_bonded(res3name, atom1_name, atom2_name):
lookup_table = residue_constants.standard_residue_bonds
for bond in lookup_table[res3name]:
if bond.atom1_name == atom1_name and bond.atom2_name == atom2_name:
return True
elif bond.atom1_name == atom2_name and bond.atom2_name == atom1_name:
return True
return False
def to_pdb(prot: Protein, conect=False) -> str:
"""Converts a `Protein` instance to a PDB string.
Args:
prot: The protein to convert to PDB.
Returns:
PDB string.
"""
restypes = residue_constants.restypes + ["X"]
res_1to3 = lambda r: residue_constants.restype_1to3.get(restypes[r], "UNK")
atom_types = residue_constants.atom_types
pdb_lines = []
atom_mask = prot.atom_mask
aatype = prot.aatype
atom_positions = prot.atom_positions
residue_index = prot.residue_index.astype(np.int32)
chain_index = prot.chain_index.astype(np.int32)
b_factors = prot.b_factors
if np.any(aatype > residue_constants.restype_num):
raise ValueError("Invalid aatypes.")
# Construct a mapping from chain integer indices to chain ID strings.
chain_ids = {}
for i in np.unique(chain_index): # np.unique gives sorted output.
if i >= PDB_MAX_CHAINS:
raise ValueError(
f"The PDB format supports at most {PDB_MAX_CHAINS} chains."
)
chain_ids[i] = PDB_CHAIN_IDS[i]
pdb_lines.append("MODEL 1")
atom_index = 1
last_chain_index = chain_index[0]
conect_lines = []
# Add all atom sites.
for i in range(aatype.shape[0]):
# Close the previous chain if in a multichain PDB.
if last_chain_index != chain_index[i]:
pdb_lines.append(
_chain_end(
atom_index,
res_1to3(aatype[i - 1]),
chain_ids[chain_index[i - 1]],
residue_index[i - 1],
)
)
last_chain_index = chain_index[i]
atom_index += 1 # Atom index increases at the TER symbol.
res_name_3 = res_1to3(aatype[i])
atoms_appended_for_res = []
for atom_name, pos, mask, b_factor in zip(
atom_types, atom_positions[i], atom_mask[i], b_factors[i]
):
if mask < 0.5:
continue
record_type = "ATOM"
name = atom_name if len(atom_name) == 4 else f" {atom_name}"
alt_loc = ""
insertion_code = ""
occupancy = 1.00
element = atom_name[0] # Protein supports only C, N, O, S, this works.
charge = ""
# PDB is a columnar format, every space matters here!
atom_line = (
f"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}"
f"{res_name_3:>3} {chain_ids[chain_index[i]]:>1}"
f"{residue_index[i]:>4}{insertion_code:>1} "
f"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}"
f"{occupancy:>6.2f}{b_factor:>6.2f} "
f"{element:>2}{charge:>2}"
)
pdb_lines.append(atom_line)
for prev_atom_idx, prev_atom in atoms_appended_for_res:
if are_atoms_bonded(res_name_3, atom_name, prev_atom):
conect_line = f"CONECT{prev_atom_idx:5d}{atom_index:5d}\n"
conect_lines.append(conect_line)
atoms_appended_for_res.append((atom_index, atom_name))
if atom_name == "N":
n_atom_idx = atom_index
if atom_name == "C":
c_atom_idx = atom_index
atom_index += 1
if i > 0:
conect_line = f"CONECT{prev_c_atom_idx:5d}{n_atom_idx:5d}\n"
conect_lines.append(conect_line)
prev_c_atom_idx = c_atom_idx
# Close the final chain.
pdb_lines.append(
_chain_end(
atom_index,
res_1to3(aatype[-1]),
chain_ids[chain_index[-1]],
residue_index[-1],
)
)
pdb_lines.append("ENDMDL")
pdb_lines.append("END")
# Pad all lines to 80 characters.
pdb_lines = [line.ljust(80) for line in pdb_lines]
pdb_str = "\n".join(pdb_lines) + "\n" # Add terminating newline.
if conect:
conect_str = "".join(conect_lines) + "\n"
return pdb_str, conect_str
return pdb_str
def ideal_atom_mask(prot: Protein) -> np.ndarray:
"""Computes an ideal atom mask.
`Protein.atom_mask` typically is defined according to the atoms that are
reported in the PDB. This function computes a mask according to heavy atoms
that should be present in the given sequence of amino acids.
Args:
prot: `Protein` whose fields are `numpy.ndarray` objects.
Returns:
An ideal atom mask.
"""
return residue_constants.STANDARD_ATOM_MASK[prot.aatype]
def from_prediction(
features: FeatureDict,
result: ModelOutput,
b_factors: Optional[np.ndarray] = None,
remove_leading_feature_dimension: bool = True,
) -> Protein:
"""Assembles a protein from a prediction.
Args:
features: Dictionary holding model inputs.
result: Dictionary holding model outputs.
b_factors: (Optional) B-factors to use for the protein.
remove_leading_feature_dimension: Whether to remove the leading dimension
of the `features` values.
Returns:
A protein instance.
"""
fold_output = result["structure_module"]
def _maybe_remove_leading_dim(arr: np.ndarray) -> np.ndarray:
return arr[0] if remove_leading_feature_dimension else arr
if "asym_id" in features:
chain_index = _maybe_remove_leading_dim(features["asym_id"])
else:
chain_index = np.zeros_like(_maybe_remove_leading_dim(features["aatype"]))
if b_factors is None:
b_factors = np.zeros_like(fold_output["final_atom_mask"])
return Protein(
aatype=_maybe_remove_leading_dim(features["aatype"]),
atom_positions=fold_output["final_atom_positions"],
atom_mask=fold_output["final_atom_mask"],
residue_index=_maybe_remove_leading_dim(features["residue_index"]) + 1,
chain_index=chain_index,
b_factors=b_factors,
)