Simon Duerr
add proteinmpnn
00aa807
from __future__ import print_function
import json, time, os, sys, glob
import shutil
import numpy as np
import torch
from torch import optim
from torch.utils.data import DataLoader
from torch.utils.data.dataset import random_split, Subset
import torch.utils
import torch.utils.checkpoint
import copy
import torch.nn as nn
import torch.nn.functional as F
import random
import itertools
def featurize(batch, device):
alphabet = 'ACDEFGHIKLMNPQRSTVWYX'
B = len(batch)
lengths = np.array([len(b['seq']) for b in batch], dtype=np.int32) #sum of chain seq lengths
L_max = max([len(b['seq']) for b in batch])
X = np.zeros([B, L_max, 4, 3])
residue_idx = -100*np.ones([B, L_max], dtype=np.int32) #residue idx with jumps across chains
chain_M = np.zeros([B, L_max], dtype=np.int32) #1.0 for the bits that need to be predicted, 0.0 for the bits that are given
mask_self = np.ones([B, L_max, L_max], dtype=np.int32) #for interface loss calculation - 0.0 for self interaction, 1.0 for other
chain_encoding_all = np.zeros([B, L_max], dtype=np.int32) #integer encoding for chains 0, 0, 0,...0, 1, 1,..., 1, 2, 2, 2...
S = np.zeros([B, L_max], dtype=np.int32) #sequence AAs integers
init_alphabet = ['A', 'B', 'C', 'D', 'E', 'F', 'G','H', 'I', 'J','K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T','U', 'V','W','X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f', 'g','h', 'i', 'j','k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't','u', 'v','w','x', 'y', 'z']
extra_alphabet = [str(item) for item in list(np.arange(300))]
chain_letters = init_alphabet + extra_alphabet
for i, b in enumerate(batch):
masked_chains = b['masked_list']
visible_chains = b['visible_list']
all_chains = masked_chains + visible_chains
visible_temp_dict = {}
masked_temp_dict = {}
for step, letter in enumerate(all_chains):
chain_seq = b[f'seq_chain_{letter}']
if letter in visible_chains:
visible_temp_dict[letter] = chain_seq
elif letter in masked_chains:
masked_temp_dict[letter] = chain_seq
for km, vm in masked_temp_dict.items():
for kv, vv in visible_temp_dict.items():
if vm == vv:
if kv not in masked_chains:
masked_chains.append(kv)
if kv in visible_chains:
visible_chains.remove(kv)
all_chains = masked_chains + visible_chains
random.shuffle(all_chains) #randomly shuffle chain order
num_chains = b['num_of_chains']
mask_dict = {}
x_chain_list = []
chain_mask_list = []
chain_seq_list = []
chain_encoding_list = []
c = 1
l0 = 0
l1 = 0
for step, letter in enumerate(all_chains):
if letter in visible_chains:
chain_seq = b[f'seq_chain_{letter}']
chain_length = len(chain_seq)
chain_coords = b[f'coords_chain_{letter}'] #this is a dictionary
chain_mask = np.zeros(chain_length) #0.0 for visible chains
x_chain = np.stack([chain_coords[c] for c in [f'N_chain_{letter}', f'CA_chain_{letter}', f'C_chain_{letter}', f'O_chain_{letter}']], 1) #[chain_length,4,3]
x_chain_list.append(x_chain)
chain_mask_list.append(chain_mask)
chain_seq_list.append(chain_seq)
chain_encoding_list.append(c*np.ones(np.array(chain_mask).shape[0]))
l1 += chain_length
mask_self[i, l0:l1, l0:l1] = np.zeros([chain_length, chain_length])
residue_idx[i, l0:l1] = 100*(c-1)+np.arange(l0, l1)
l0 += chain_length
c+=1
elif letter in masked_chains:
chain_seq = b[f'seq_chain_{letter}']
chain_length = len(chain_seq)
chain_coords = b[f'coords_chain_{letter}'] #this is a dictionary
chain_mask = np.ones(chain_length) #0.0 for visible chains
x_chain = np.stack([chain_coords[c] for c in [f'N_chain_{letter}', f'CA_chain_{letter}', f'C_chain_{letter}', f'O_chain_{letter}']], 1) #[chain_lenght,4,3]
x_chain_list.append(x_chain)
chain_mask_list.append(chain_mask)
chain_seq_list.append(chain_seq)
chain_encoding_list.append(c*np.ones(np.array(chain_mask).shape[0]))
l1 += chain_length
mask_self[i, l0:l1, l0:l1] = np.zeros([chain_length, chain_length])
residue_idx[i, l0:l1] = 100*(c-1)+np.arange(l0, l1)
l0 += chain_length
c+=1
x = np.concatenate(x_chain_list,0) #[L, 4, 3]
all_sequence = "".join(chain_seq_list)
m = np.concatenate(chain_mask_list,0) #[L,], 1.0 for places that need to be predicted
chain_encoding = np.concatenate(chain_encoding_list,0)
l = len(all_sequence)
x_pad = np.pad(x, [[0,L_max-l], [0,0], [0,0]], 'constant', constant_values=(np.nan, ))
X[i,:,:,:] = x_pad
m_pad = np.pad(m, [[0,L_max-l]], 'constant', constant_values=(0.0, ))
chain_M[i,:] = m_pad
chain_encoding_pad = np.pad(chain_encoding, [[0,L_max-l]], 'constant', constant_values=(0.0, ))
chain_encoding_all[i,:] = chain_encoding_pad
# Convert to labels
indices = np.asarray([alphabet.index(a) for a in all_sequence], dtype=np.int32)
S[i, :l] = indices
isnan = np.isnan(X)
mask = np.isfinite(np.sum(X,(2,3))).astype(np.float32)
X[isnan] = 0.
# Conversion
residue_idx = torch.from_numpy(residue_idx).to(dtype=torch.long,device=device)
S = torch.from_numpy(S).to(dtype=torch.long,device=device)
X = torch.from_numpy(X).to(dtype=torch.float32, device=device)
mask = torch.from_numpy(mask).to(dtype=torch.float32, device=device)
mask_self = torch.from_numpy(mask_self).to(dtype=torch.float32, device=device)
chain_M = torch.from_numpy(chain_M).to(dtype=torch.float32, device=device)
chain_encoding_all = torch.from_numpy(chain_encoding_all).to(dtype=torch.long, device=device)
return X, S, mask, lengths, chain_M, residue_idx, mask_self, chain_encoding_all
def loss_nll(S, log_probs, mask):
""" Negative log probabilities """
criterion = torch.nn.NLLLoss(reduction='none')
loss = criterion(
log_probs.contiguous().view(-1, log_probs.size(-1)), S.contiguous().view(-1)
).view(S.size())
S_argmaxed = torch.argmax(log_probs,-1) #[B, L]
true_false = (S == S_argmaxed).float()
loss_av = torch.sum(loss * mask) / torch.sum(mask)
return loss, loss_av, true_false
def loss_smoothed(S, log_probs, mask, weight=0.1):
""" Negative log probabilities """
S_onehot = torch.nn.functional.one_hot(S, 21).float()
# Label smoothing
S_onehot = S_onehot + weight / float(S_onehot.size(-1))
S_onehot = S_onehot / S_onehot.sum(-1, keepdim=True)
loss = -(S_onehot * log_probs).sum(-1)
loss_av = torch.sum(loss * mask) / 2000.0 #fixed
return loss, loss_av
# The following gather functions
def gather_edges(edges, neighbor_idx):
# Features [B,N,N,C] at Neighbor indices [B,N,K] => Neighbor features [B,N,K,C]
neighbors = neighbor_idx.unsqueeze(-1).expand(-1, -1, -1, edges.size(-1))
edge_features = torch.gather(edges, 2, neighbors)
return edge_features
def gather_nodes(nodes, neighbor_idx):
# Features [B,N,C] at Neighbor indices [B,N,K] => [B,N,K,C]
# Flatten and expand indices per batch [B,N,K] => [B,NK] => [B,NK,C]
neighbors_flat = neighbor_idx.view((neighbor_idx.shape[0], -1))
neighbors_flat = neighbors_flat.unsqueeze(-1).expand(-1, -1, nodes.size(2))
# Gather and re-pack
neighbor_features = torch.gather(nodes, 1, neighbors_flat)
neighbor_features = neighbor_features.view(list(neighbor_idx.shape)[:3] + [-1])
return neighbor_features
def gather_nodes_t(nodes, neighbor_idx):
# Features [B,N,C] at Neighbor index [B,K] => Neighbor features[B,K,C]
idx_flat = neighbor_idx.unsqueeze(-1).expand(-1, -1, nodes.size(2))
neighbor_features = torch.gather(nodes, 1, idx_flat)
return neighbor_features
def cat_neighbors_nodes(h_nodes, h_neighbors, E_idx):
h_nodes = gather_nodes(h_nodes, E_idx)
h_nn = torch.cat([h_neighbors, h_nodes], -1)
return h_nn
class EncLayer(nn.Module):
def __init__(self, num_hidden, num_in, dropout=0.1, num_heads=None, scale=30):
super(EncLayer, self).__init__()
self.num_hidden = num_hidden
self.num_in = num_in
self.scale = scale
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.dropout3 = nn.Dropout(dropout)
self.norm1 = nn.LayerNorm(num_hidden)
self.norm2 = nn.LayerNorm(num_hidden)
self.norm3 = nn.LayerNorm(num_hidden)
self.W1 = nn.Linear(num_hidden + num_in, num_hidden, bias=True)
self.W2 = nn.Linear(num_hidden, num_hidden, bias=True)
self.W3 = nn.Linear(num_hidden, num_hidden, bias=True)
self.W11 = nn.Linear(num_hidden + num_in, num_hidden, bias=True)
self.W12 = nn.Linear(num_hidden, num_hidden, bias=True)
self.W13 = nn.Linear(num_hidden, num_hidden, bias=True)
self.act = torch.nn.GELU()
self.dense = PositionWiseFeedForward(num_hidden, num_hidden * 4)
def forward(self, h_V, h_E, E_idx, mask_V=None, mask_attend=None):
""" Parallel computation of full transformer layer """
h_EV = cat_neighbors_nodes(h_V, h_E, E_idx)
h_V_expand = h_V.unsqueeze(-2).expand(-1,-1,h_EV.size(-2),-1)
h_EV = torch.cat([h_V_expand, h_EV], -1)
h_message = self.W3(self.act(self.W2(self.act(self.W1(h_EV)))))
if mask_attend is not None:
h_message = mask_attend.unsqueeze(-1) * h_message
dh = torch.sum(h_message, -2) / self.scale
h_V = self.norm1(h_V + self.dropout1(dh))
dh = self.dense(h_V)
h_V = self.norm2(h_V + self.dropout2(dh))
if mask_V is not None:
mask_V = mask_V.unsqueeze(-1)
h_V = mask_V * h_V
h_EV = cat_neighbors_nodes(h_V, h_E, E_idx)
h_V_expand = h_V.unsqueeze(-2).expand(-1,-1,h_EV.size(-2),-1)
h_EV = torch.cat([h_V_expand, h_EV], -1)
h_message = self.W13(self.act(self.W12(self.act(self.W11(h_EV)))))
h_E = self.norm3(h_E + self.dropout3(h_message))
return h_V, h_E
class DecLayer(nn.Module):
def __init__(self, num_hidden, num_in, dropout=0.1, num_heads=None, scale=30):
super(DecLayer, self).__init__()
self.num_hidden = num_hidden
self.num_in = num_in
self.scale = scale
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.norm1 = nn.LayerNorm(num_hidden)
self.norm2 = nn.LayerNorm(num_hidden)
self.W1 = nn.Linear(num_hidden + num_in, num_hidden, bias=True)
self.W2 = nn.Linear(num_hidden, num_hidden, bias=True)
self.W3 = nn.Linear(num_hidden, num_hidden, bias=True)
self.act = torch.nn.GELU()
self.dense = PositionWiseFeedForward(num_hidden, num_hidden * 4)
def forward(self, h_V, h_E, mask_V=None, mask_attend=None):
""" Parallel computation of full transformer layer """
# Concatenate h_V_i to h_E_ij
h_V_expand = h_V.unsqueeze(-2).expand(-1,-1,h_E.size(-2),-1)
h_EV = torch.cat([h_V_expand, h_E], -1)
h_message = self.W3(self.act(self.W2(self.act(self.W1(h_EV)))))
if mask_attend is not None:
h_message = mask_attend.unsqueeze(-1) * h_message
dh = torch.sum(h_message, -2) / self.scale
h_V = self.norm1(h_V + self.dropout1(dh))
# Position-wise feedforward
dh = self.dense(h_V)
h_V = self.norm2(h_V + self.dropout2(dh))
if mask_V is not None:
mask_V = mask_V.unsqueeze(-1)
h_V = mask_V * h_V
return h_V
class PositionWiseFeedForward(nn.Module):
def __init__(self, num_hidden, num_ff):
super(PositionWiseFeedForward, self).__init__()
self.W_in = nn.Linear(num_hidden, num_ff, bias=True)
self.W_out = nn.Linear(num_ff, num_hidden, bias=True)
self.act = torch.nn.GELU()
def forward(self, h_V):
h = self.act(self.W_in(h_V))
h = self.W_out(h)
return h
class PositionalEncodings(nn.Module):
def __init__(self, num_embeddings, max_relative_feature=32):
super(PositionalEncodings, self).__init__()
self.num_embeddings = num_embeddings
self.max_relative_feature = max_relative_feature
self.linear = nn.Linear(2*max_relative_feature+1+1, num_embeddings)
def forward(self, offset, mask):
d = torch.clip(offset + self.max_relative_feature, 0, 2*self.max_relative_feature)*mask + (1-mask)*(2*self.max_relative_feature+1)
d_onehot = torch.nn.functional.one_hot(d, 2*self.max_relative_feature+1+1)
E = self.linear(d_onehot.float())
return E
class ProteinFeatures(nn.Module):
def __init__(self, edge_features, node_features, num_positional_embeddings=16,
num_rbf=16, top_k=30, augment_eps=0., num_chain_embeddings=16):
""" Extract protein features """
super(ProteinFeatures, self).__init__()
self.edge_features = edge_features
self.node_features = node_features
self.top_k = top_k
self.augment_eps = augment_eps
self.num_rbf = num_rbf
self.num_positional_embeddings = num_positional_embeddings
self.embeddings = PositionalEncodings(num_positional_embeddings)
node_in, edge_in = 6, num_positional_embeddings + num_rbf*25
self.edge_embedding = nn.Linear(edge_in, edge_features, bias=False)
self.norm_edges = nn.LayerNorm(edge_features)
def _dist(self, X, mask, eps=1E-6):
mask_2D = torch.unsqueeze(mask,1) * torch.unsqueeze(mask,2)
dX = torch.unsqueeze(X,1) - torch.unsqueeze(X,2)
D = mask_2D * torch.sqrt(torch.sum(dX**2, 3) + eps)
D_max, _ = torch.max(D, -1, keepdim=True)
D_adjust = D + (1. - mask_2D) * D_max
sampled_top_k = self.top_k
D_neighbors, E_idx = torch.topk(D_adjust, np.minimum(self.top_k, X.shape[1]), dim=-1, largest=False)
return D_neighbors, E_idx
def _rbf(self, D):
device = D.device
D_min, D_max, D_count = 2., 22., self.num_rbf
D_mu = torch.linspace(D_min, D_max, D_count, device=device)
D_mu = D_mu.view([1,1,1,-1])
D_sigma = (D_max - D_min) / D_count
D_expand = torch.unsqueeze(D, -1)
RBF = torch.exp(-((D_expand - D_mu) / D_sigma)**2)
return RBF
def _get_rbf(self, A, B, E_idx):
D_A_B = torch.sqrt(torch.sum((A[:,:,None,:] - B[:,None,:,:])**2,-1) + 1e-6) #[B, L, L]
D_A_B_neighbors = gather_edges(D_A_B[:,:,:,None], E_idx)[:,:,:,0] #[B,L,K]
RBF_A_B = self._rbf(D_A_B_neighbors)
return RBF_A_B
def forward(self, X, mask, residue_idx, chain_labels):
if self.training and self.augment_eps > 0:
X = X + self.augment_eps * torch.randn_like(X)
b = X[:,:,1,:] - X[:,:,0,:]
c = X[:,:,2,:] - X[:,:,1,:]
a = torch.cross(b, c, dim=-1)
Cb = -0.58273431*a + 0.56802827*b - 0.54067466*c + X[:,:,1,:]
Ca = X[:,:,1,:]
N = X[:,:,0,:]
C = X[:,:,2,:]
O = X[:,:,3,:]
D_neighbors, E_idx = self._dist(Ca, mask)
RBF_all = []
RBF_all.append(self._rbf(D_neighbors)) #Ca-Ca
RBF_all.append(self._get_rbf(N, N, E_idx)) #N-N
RBF_all.append(self._get_rbf(C, C, E_idx)) #C-C
RBF_all.append(self._get_rbf(O, O, E_idx)) #O-O
RBF_all.append(self._get_rbf(Cb, Cb, E_idx)) #Cb-Cb
RBF_all.append(self._get_rbf(Ca, N, E_idx)) #Ca-N
RBF_all.append(self._get_rbf(Ca, C, E_idx)) #Ca-C
RBF_all.append(self._get_rbf(Ca, O, E_idx)) #Ca-O
RBF_all.append(self._get_rbf(Ca, Cb, E_idx)) #Ca-Cb
RBF_all.append(self._get_rbf(N, C, E_idx)) #N-C
RBF_all.append(self._get_rbf(N, O, E_idx)) #N-O
RBF_all.append(self._get_rbf(N, Cb, E_idx)) #N-Cb
RBF_all.append(self._get_rbf(Cb, C, E_idx)) #Cb-C
RBF_all.append(self._get_rbf(Cb, O, E_idx)) #Cb-O
RBF_all.append(self._get_rbf(O, C, E_idx)) #O-C
RBF_all.append(self._get_rbf(N, Ca, E_idx)) #N-Ca
RBF_all.append(self._get_rbf(C, Ca, E_idx)) #C-Ca
RBF_all.append(self._get_rbf(O, Ca, E_idx)) #O-Ca
RBF_all.append(self._get_rbf(Cb, Ca, E_idx)) #Cb-Ca
RBF_all.append(self._get_rbf(C, N, E_idx)) #C-N
RBF_all.append(self._get_rbf(O, N, E_idx)) #O-N
RBF_all.append(self._get_rbf(Cb, N, E_idx)) #Cb-N
RBF_all.append(self._get_rbf(C, Cb, E_idx)) #C-Cb
RBF_all.append(self._get_rbf(O, Cb, E_idx)) #O-Cb
RBF_all.append(self._get_rbf(C, O, E_idx)) #C-O
RBF_all = torch.cat(tuple(RBF_all), dim=-1)
offset = residue_idx[:,:,None]-residue_idx[:,None,:]
offset = gather_edges(offset[:,:,:,None], E_idx)[:,:,:,0] #[B, L, K]
d_chains = ((chain_labels[:, :, None] - chain_labels[:,None,:])==0).long() #find self vs non-self interaction
E_chains = gather_edges(d_chains[:,:,:,None], E_idx)[:,:,:,0]
E_positional = self.embeddings(offset.long(), E_chains)
E = torch.cat((E_positional, RBF_all), -1)
E = self.edge_embedding(E)
E = self.norm_edges(E)
return E, E_idx
class ProteinMPNN(nn.Module):
def __init__(self, num_letters=21, node_features=128, edge_features=128,
hidden_dim=128, num_encoder_layers=3, num_decoder_layers=3,
vocab=21, k_neighbors=32, augment_eps=0.1, dropout=0.1):
super(ProteinMPNN, self).__init__()
# Hyperparameters
self.node_features = node_features
self.edge_features = edge_features
self.hidden_dim = hidden_dim
self.features = ProteinFeatures(node_features, edge_features, top_k=k_neighbors, augment_eps=augment_eps)
self.W_e = nn.Linear(edge_features, hidden_dim, bias=True)
self.W_s = nn.Embedding(vocab, hidden_dim)
# Encoder layers
self.encoder_layers = nn.ModuleList([
EncLayer(hidden_dim, hidden_dim*2, dropout=dropout)
for _ in range(num_encoder_layers)
])
# Decoder layers
self.decoder_layers = nn.ModuleList([
DecLayer(hidden_dim, hidden_dim*3, dropout=dropout)
for _ in range(num_decoder_layers)
])
self.W_out = nn.Linear(hidden_dim, num_letters, bias=True)
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(self, X, S, mask, chain_M, residue_idx, chain_encoding_all):
""" Graph-conditioned sequence model """
device=X.device
# Prepare node and edge embeddings
E, E_idx = self.features(X, mask, residue_idx, chain_encoding_all)
h_V = torch.zeros((E.shape[0], E.shape[1], E.shape[-1]), device=E.device)
h_E = self.W_e(E)
# Encoder is unmasked self-attention
mask_attend = gather_nodes(mask.unsqueeze(-1), E_idx).squeeze(-1)
mask_attend = mask.unsqueeze(-1) * mask_attend
for layer in self.encoder_layers:
h_V, h_E = torch.utils.checkpoint.checkpoint(layer, h_V, h_E, E_idx, mask, mask_attend)
# Concatenate sequence embeddings for autoregressive decoder
h_S = self.W_s(S)
h_ES = cat_neighbors_nodes(h_S, h_E, E_idx)
# Build encoder embeddings
h_EX_encoder = cat_neighbors_nodes(torch.zeros_like(h_S), h_E, E_idx)
h_EXV_encoder = cat_neighbors_nodes(h_V, h_EX_encoder, E_idx)
chain_M = chain_M*mask #update chain_M to include missing regions
decoding_order = torch.argsort((chain_M+0.0001)*(torch.abs(torch.randn(chain_M.shape, device=device)))) #[numbers will be smaller for places where chain_M = 0.0 and higher for places where chain_M = 1.0]
mask_size = E_idx.shape[1]
permutation_matrix_reverse = torch.nn.functional.one_hot(decoding_order, num_classes=mask_size).float()
order_mask_backward = torch.einsum('ij, biq, bjp->bqp',(1-torch.triu(torch.ones(mask_size,mask_size, device=device))), permutation_matrix_reverse, permutation_matrix_reverse)
mask_attend = torch.gather(order_mask_backward, 2, E_idx).unsqueeze(-1)
mask_1D = mask.view([mask.size(0), mask.size(1), 1, 1])
mask_bw = mask_1D * mask_attend
mask_fw = mask_1D * (1. - mask_attend)
h_EXV_encoder_fw = mask_fw * h_EXV_encoder
for layer in self.decoder_layers:
h_ESV = cat_neighbors_nodes(h_V, h_ES, E_idx)
h_ESV = mask_bw * h_ESV + h_EXV_encoder_fw
h_V = torch.utils.checkpoint.checkpoint(layer, h_V, h_ESV, mask)
logits = self.W_out(h_V)
log_probs = F.log_softmax(logits, dim=-1)
return log_probs
class NoamOpt:
"Optim wrapper that implements rate."
def __init__(self, model_size, factor, warmup, optimizer, step):
self.optimizer = optimizer
self._step = step
self.warmup = warmup
self.factor = factor
self.model_size = model_size
self._rate = 0
@property
def param_groups(self):
"""Return param_groups."""
return self.optimizer.param_groups
def step(self):
"Update parameters and rate"
self._step += 1
rate = self.rate()
for p in self.optimizer.param_groups:
p['lr'] = rate
self._rate = rate
self.optimizer.step()
def rate(self, step = None):
"Implement `lrate` above"
if step is None:
step = self._step
return self.factor * \
(self.model_size ** (-0.5) *
min(step ** (-0.5), step * self.warmup ** (-1.5)))
def zero_grad(self):
self.optimizer.zero_grad()
def get_std_opt(parameters, d_model, step):
return NoamOpt(
d_model, 2, 4000, torch.optim.Adam(parameters, lr=0, betas=(0.9, 0.98), eps=1e-9), step
)