protpardelle / draw_samples.py
Simon Duerr
fix: train path, update draw samples
22e3abd
"""
https://github.com/ProteinDesignLab/protpardelle
License: MIT
Author: Alex Chu
Entry point for unconditional or simple conditional sampling.
"""
import argparse
from datetime import datetime
import json
import os
import shlex
import subprocess
import sys
import time
from einops import repeat
import torch
from core import data
from core import residue_constants
from core import utils
import diffusion
import models
import sampling
def draw_and_save_samples(
model,
samples_per_len=8,
lengths=range(50, 512),
save_dir="./",
mode="backbone",
**sampling_kwargs,
):
device = model.device
if mode == "backbone":
total_sampling_time = 0
for l in lengths:
prot_lens = torch.ones(samples_per_len).long() * l
seq_mask = model.make_seq_mask_for_sampling(prot_lens=prot_lens)
aux = sampling.draw_backbone_samples(
model,
seq_mask=seq_mask,
pdb_save_path=f"{save_dir}/len{format(l, '03d')}_samp",
return_aux=True,
return_sampling_runtime=True,
**sampling_kwargs,
)
total_sampling_time += aux["runtime"]
print("Samples drawn for length", l)
return total_sampling_time
elif mode == "allatom":
total_sampling_time = 0
for l in lengths:
prot_lens = torch.ones(samples_per_len).long() * l
seq_mask = model.make_seq_mask_for_sampling(prot_lens=prot_lens)
aux = sampling.draw_allatom_samples(
model,
seq_mask=seq_mask,
pdb_save_path=f"{save_dir}/len{format(l, '03d')}",
return_aux=True,
**sampling_kwargs,
)
total_sampling_time += aux["runtime"]
print("Samples drawn for length", l)
return total_sampling_time
def parse_idx_string(idx_str):
spans = idx_str.split(",")
idxs = []
for s in spans:
if "-" in s:
start, stop = s.split("-")
idxs.extend(list(range(int(start), int(stop))))
else:
idxs.append(int(s))
return idxs
class Manager(object):
def __init__(self):
self.parser = argparse.ArgumentParser(
formatter_class=argparse.RawTextHelpFormatter
)
self.parser.add_argument(
"--model_checkpoint",
type=str,
default="checkpoints",
help="Path to denoiser model weights and config",
)
self.parser.add_argument(
"--mpnnpath",
type=str,
default="checkpoints/minimpnn_state_dict.pth",
help="Path to minimpnn model weights",
)
self.parser.add_argument(
"--modeldir",
type=str,
help="Model base directory, ex 'training_logs/other/lemon-shape-51'",
)
self.parser.add_argument("--modelepoch", type=int, help="Model epoch, ex 1000")
self.parser.add_argument(
"--type", type=str, default="allatom", help="Type of model"
)
self.parser.add_argument(
"--param", type=str, default=None, help="Which sampling param to vary"
)
self.parser.add_argument(
"--paramval", type=str, default=None, help="Which param val to use"
)
self.parser.add_argument(
"--parampath",
type=str,
default=None,
help="Path to json file with params, either use param/paramval or parampath, not both",
)
self.parser.add_argument(
"--perlen", type=int, default=2, help="How many samples per sequence length"
)
self.parser.add_argument(
"--minlen", type=int, default=50, help="Minimum sequence length"
)
self.parser.add_argument(
"--maxlen",
type=int,
default=60,
help="Maximum sequence length, not inclusive",
)
self.parser.add_argument(
"--steplen",
type=int,
default=5,
help="How frequently to select sequence length, for steplen 2, would be 50, 52, 54, etc",
)
self.parser.add_argument(
"--num_lens",
type=int,
required=False,
help="If steplen not provided, how many random lengths to sample at",
)
self.parser.add_argument(
"--targetdir", type=str, default=".", help="Directory to save results"
)
self.parser.add_argument(
"--input_pdb", type=str, required=False, help="PDB file to condition on"
)
self.parser.add_argument(
"--resample_idxs",
type=str,
required=False,
help="Indices from PDB file to resample. Zero-indexed, comma-delimited, can use dashes, eg 0,2-5,7",
)
def add_argument(self, *args, **kwargs):
self.parser.add_argument(*args, **kwargs)
def parse_args(self):
self.args = self.parser.parse_args()
return self.args
def main():
# Set up params, arguments, sampling config
####################
manager = Manager()
manager.parse_args()
args = manager.args
print(args)
is_test_run = False
seed = 0
samples_per_len = args.perlen
min_len = args.minlen
max_len = args.maxlen
len_step_size = args.steplen
device = "cuda:0"
# setting default sampling config
if args.type == "backbone":
sampling_config = sampling.default_backbone_sampling_config()
elif args.type == "allatom":
sampling_config = sampling.default_allatom_sampling_config()
sampling_kwargs = vars(sampling_config)
# Parse conditioning inputs
input_pdb_len = None
if args.input_pdb:
input_feats = utils.load_feats_from_pdb(args.input_pdb, protein_only=True)
input_pdb_len = input_feats["aatype"].shape[0]
if args.resample_idxs:
print(
f"Warning: when sampling conditionally, the input pdb length ({input_pdb_len} residues) is used automatically for the sampling lengths."
)
resample_idxs = parse_idx_string(args.resample_idxs)
else:
resample_idxs = list(range(input_pdb_len))
cond_idxs = [i for i in range(input_pdb_len) if i not in resample_idxs]
to_batch_size = lambda x: repeat(x, "... -> b ...", b=samples_per_len).to(
device
)
# For unconditional model, center coords on whole structure
centered_coords = data.apply_random_se3(
input_feats["atom_positions"],
atom_mask=input_feats["atom_mask"],
translation_scale=0.0,
)
cond_kwargs = {}
cond_kwargs["gt_coords"] = to_batch_size(centered_coords)
cond_kwargs["gt_cond_atom_mask"] = to_batch_size(input_feats["atom_mask"])
cond_kwargs["gt_cond_atom_mask"][:, resample_idxs] = 0
cond_kwargs["gt_aatype"] = to_batch_size(input_feats["aatype"])
cond_kwargs["gt_cond_seq_mask"] = torch.zeros_like(cond_kwargs["gt_aatype"])
cond_kwargs["gt_cond_seq_mask"][:, cond_idxs] = 1
sampling_kwargs.update(cond_kwargs)
# Determine lengths to sample at
if min_len is not None and max_len is not None:
if len_step_size is not None:
sampling_lengths = range(min_len, max_len, len_step_size)
else:
sampling_lengths = list(
torch.randint(min_len, max_len, size=(args.num_lens,))
)
elif input_pdb_len is not None:
sampling_lengths = [input_pdb_len]
else:
raise Exception("Need to provide a set of protein lengths or an input pdb.")
total_num_samples = len(list(sampling_lengths)) * samples_per_len
model_directory = args.modeldir
epoch = args.modelepoch
base_dir = args.targetdir
date_string = datetime.now().strftime("%y-%m-%d-%H-%M-%S")
if is_test_run:
date_string = f"test-{date_string}"
# Update sampling config with arguments
if args.param:
var_param = args.param
var_value = args.paramval
sampling_kwargs[var_param] = (
None
if var_value == "None"
else int(var_value)
if var_param == "n_steps"
else float(var_value)
)
elif args.parampath:
with open(args.parampath) as f:
var_params = json.loads(f.read())
sampling_kwargs.update(var_params)
# this is only used for the readme, keep s_min and s_max as params instead of struct_noise_schedule
sampling_kwargs_readme = list(sampling_kwargs.items())
print("Base directory:", base_dir)
save_dir = f"{base_dir}/samples"
save_init_dir = f"{base_dir}/samples_inits"
print("Samples saved to:", save_dir)
####################
torch.manual_seed(seed)
if not os.path.exists(save_dir):
subprocess.run(shlex.split(f"mkdir -p {save_dir}"))
if not os.path.exists(save_init_dir):
subprocess.run(shlex.split(f"mkdir -p {save_init_dir}"))
# Load model
if args.type == "backbone":
if args.model_checkpoint:
checkpoint = f"{args.model_checkpoint}/backbone_state_dict.pth"
cfg_path = f"{args.model_checkpoint}/backbone_pretrained.yml"
else:
checkpoint = (
f"{model_directory}/checkpoints/epoch{epoch}_training_state.pth"
)
cfg_path = f"{model_directory}/configs/backbone.yml"
config = utils.load_config(cfg_path)
weights = torch.load(checkpoint, map_location=device)["model_state_dict"]
model = models.Protpardelle(config, device=device)
model.load_state_dict(weights)
model.to(device)
model.eval()
model.device = device
elif args.type == "allatom":
if args.model_checkpoint:
checkpoint = f"{args.model_checkpoint}/allatom_state_dict.pth"
cfg_path = f"{args.model_checkpoint}/allatom_pretrained.yml"
else:
checkpoint = (
f"{model_directory}/checkpoints/epoch{epoch}_training_state.pth"
)
cfg_path = f"{model_directory}/configs/allatom.yml"
config = utils.load_config(cfg_path)
weights = torch.load(checkpoint, map_location=device)["model_state_dict"]
model = models.Protpardelle(config, device=device)
model.load_state_dict(weights)
model.load_minimpnn(args.mpnnpath)
model.to(device)
model.eval()
model.device = device
if config.train.home_dir == '':
config.train.home_dir = os.getcwd()
# Sampling
with open(save_dir + "/readme.txt", "w") as f:
f.write(f"Sampling run for {date_string}\n")
f.write(f"Random seed {seed}\n")
f.write(f"Model checkpoint: {checkpoint}\n")
f.write(
f"{samples_per_len} samples per length from {min_len}:{max_len}:{len_step_size}\n"
)
f.write("Sampling params:\n")
for k, v in sampling_kwargs_readme:
f.write(f"{k}\t{v}\n")
print(f"Model loaded from {checkpoint}")
print(f"Beginning sampling for {date_string}...")
# Draw samples
start_time = time.time()
sampling_time = draw_and_save_samples(
model,
samples_per_len=samples_per_len,
lengths=sampling_lengths,
save_dir=save_dir,
mode=args.type,
**sampling_kwargs,
)
time_elapsed = time.time() - start_time
print(f"Sampling concluded after {time_elapsed} seconds.")
print(f"Of this, {sampling_time} seconds were for actual sampling.")
print(f"{total_num_samples} total samples were drawn.")
with open(save_dir + "/readme.txt", "a") as f:
f.write(f"Total job time: {time_elapsed} seconds\n")
f.write(f"Model run time: {sampling_time} seconds\n")
f.write(f"Total samples drawn: {total_num_samples}\n")
return
if __name__ == "__main__":
main()