# llm_integration/task_extraction.py from openai import OpenAI import re import json def extract_json_from_raw_response(raw_response): """ Extract the JSON part from the raw response string. Args: raw_response (str): The raw response from the LLM containing JSON and additional text. Returns: dict: Parsed JSON object. """ # Use regex to extract the JSON block between ```json and ``` match = re.search(r"```json(.*?)```", raw_response, re.DOTALL) if match: json_string = match.group(1).strip() # Extract the matched JSON part try: json_data = json.loads(json_string) # Parse the JSON string into a Python dictionary return json_data except json.JSONDecodeError as e: print(f"Error decoding JSON: {e}") return None else: print("No valid JSON block found in the response.") return None def extract_tasks_from_text(conversation_text): """Send conversation text to the LLM and extract tasks in JSON format.""" # Define the prompt prompt = f""" Extract detailed project information from the following text and structure it in JSON format. The JSON should have each project as a main key, with tasks as subkeys. For each task, include the following fields: "description", "priority", "assigned_to", and "current_status". Use the conversation details to populate the values accurately. Text: ''' {conversation_text} ''' Expected JSON Output: {{ "project_name_1": {{ "Task-1": {{ "description": "Brief description of the task", "priority": "high/medium/low", "assigned_to": "Person responsible", "current_status": "Status of the task (e.g., completed, in progress, pending)" }}, "Task-2": {{ "description": "Brief description of the task", "priority": "high/medium/low", "assigned_to": "Person responsible", "current_status": "Status of the task (e.g., completed, in progress, pending)" }} }}, "project_name_2": {{ "Task-1": {{ "description": "Brief description of the task", "priority": "high/medium/low", "assigned_to": "Person responsible", "current_status": "Status of the task (e.g., completed, in progress, pending)" }} }} }} """ client = OpenAI(api_key='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') stream = client.chat.completions.create( model="gpt-4o", messages=[{"role": "user", "content":prompt}], # stream=True, ) raw_response = stream.choices[0].message.content final_response= extract_json_from_raw_response(raw_response) return final_response