Commit
·
2f73fd7
1
Parent(s):
72ac86a
Add application file
Browse files- .gitattributes +0 -35
- Dockerfile +9 -4
- README.md +5 -7
- app.py +318 -13
- extract_text.py +29 -0
- main.py +107 -0
- models.py +11 -0
- requirements.txt +10 -6
- text_similarity.py +125 -0
.gitattributes
DELETED
@@ -1,35 +0,0 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dockerfile
CHANGED
@@ -1,10 +1,15 @@
|
|
1 |
FROM python:3.9
|
2 |
|
3 |
-
|
4 |
|
5 |
-
|
6 |
|
7 |
-
|
8 |
|
9 |
-
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
1 |
FROM python:3.9
|
2 |
|
3 |
+
WORKDIR /app
|
4 |
|
5 |
+
RUN mkdir -p /app/.EasyOCR && chmod 777 /app/.EasyOCR
|
6 |
|
7 |
+
ENV EASYOCR_MODULE_PATH="/app/.EasyOCR"
|
8 |
|
9 |
+
COPY requirements.txt .
|
10 |
|
11 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
12 |
+
|
13 |
+
COPY ./*.py /app/
|
14 |
+
|
15 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
README.md
CHANGED
@@ -1,11 +1,9 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
-
sdk:
|
7 |
-
sdk_version: 5.22.0
|
8 |
-
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
11 |
|
|
|
1 |
---
|
2 |
+
title: Similarity
|
3 |
+
emoji: 🌍
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: gray
|
6 |
+
sdk: docker
|
|
|
|
|
7 |
pinned: false
|
8 |
---
|
9 |
|
app.py
CHANGED
@@ -1,17 +1,322 @@
|
|
1 |
-
|
2 |
-
|
|
|
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import torch
|
4 |
+
from extract_text import extract_text_from_image
|
5 |
+
from text_similarity import analyze_similarity
|
6 |
|
7 |
+
def process_image(image, key_texts, similarity_threshold, fragment_threshold):
|
8 |
+
"""Processes the image, extracts text, and analyzes similarities."""
|
9 |
+
try:
|
10 |
+
if image is None:
|
11 |
+
return "Please upload an image for analysis.", None, None, None, None, None
|
12 |
+
|
13 |
+
if not key_texts.strip():
|
14 |
+
return "Please enter key texts for comparison.", None, None, None, None, None
|
15 |
+
|
16 |
+
# Extract text from the image using the user's method
|
17 |
+
gpu_available = torch.cuda.is_available()
|
18 |
+
extracted_texts = extract_text_from_image(image, gpu_available)
|
19 |
+
|
20 |
+
if isinstance(key_texts, str):
|
21 |
+
key_texts = [text.strip() for text in key_texts.split('\n') if text.strip()]
|
22 |
+
|
23 |
+
# Process the analysis
|
24 |
+
results = analyze_similarity(
|
25 |
+
extracted_texts,
|
26 |
+
key_texts,
|
27 |
+
similarity_threshold=similarity_threshold/100, # Convert percentage to decimal
|
28 |
+
fragment_threshold=fragment_threshold/100 # Convert percentage to decimal
|
29 |
+
)
|
30 |
+
|
31 |
+
# Gerar relatório HTML
|
32 |
+
html_report = generate_html_report(results)
|
33 |
+
|
34 |
+
# Gerar DataFrames
|
35 |
+
dfs = generate_results_dataframe(results)
|
36 |
+
|
37 |
+
# Extrair DataFrames individuais (ou criar vazios se não existirem)
|
38 |
+
df_statistics = dfs.get("statistics", pd.DataFrame())
|
39 |
+
df_similar = dfs.get("similar", pd.DataFrame(columns=["Index", "Original Text", "Key Text", "Similarity"]))
|
40 |
+
df_fragments = dfs.get("fragments", pd.DataFrame(columns=["Index", "Original Text", "Key Text", "Similarity"]))
|
41 |
+
df_combined = dfs.get("combined", pd.DataFrame(columns=["Indices", "Text 1", "Text 2", "Combined Text", "Key Text", "Similarity"]))
|
42 |
+
|
43 |
+
return html_report, df_statistics, df_similar, df_fragments, df_combined, extracted_texts, gpu_available
|
44 |
|
45 |
+
|
46 |
+
except Exception as e:
|
47 |
+
return f"Erro ao processar: {str(e)}", None, None, None, None, None
|
48 |
+
|
49 |
+
def process_manual_input(texts, key_texts, similarity_threshold, fragment_threshold):
|
50 |
+
"""Processes the user's manual text input."""
|
51 |
+
# Validate input
|
52 |
+
if not texts.strip() or not key_texts.strip():
|
53 |
+
return "Please enter texts for analysis and key texts for comparison.", None, None, None, None
|
54 |
+
|
55 |
+
try:
|
56 |
+
# Process the analysis
|
57 |
+
results = analyze_similarity(
|
58 |
+
texts,
|
59 |
+
key_texts,
|
60 |
+
similarity_threshold=similarity_threshold/100, # Convert percentage to decimal
|
61 |
+
fragment_threshold=fragment_threshold/100 # Convert percentage to decimal
|
62 |
+
)
|
63 |
+
|
64 |
+
# Generate HTML report
|
65 |
+
html_report = generate_html_report(results)
|
66 |
+
|
67 |
+
# Gerar DataFrames
|
68 |
+
dfs = generate_results_dataframe(results)
|
69 |
+
|
70 |
+
# Extract individual DataFrames (or create empty ones if they don't exist)
|
71 |
+
df_statistics = dfs.get("statistics", pd.DataFrame())
|
72 |
+
df_similar = dfs.get("similar", pd.DataFrame(columns=["Index", "Original Text", "Key Text", "Similarity"]))
|
73 |
+
df_fragments = dfs.get("fragments", pd.DataFrame(columns=["Index", "Original Text", "Key Text", "Similarity"]))
|
74 |
+
df_combined = dfs.get("combined", pd.DataFrame(columns=["Indices", "Text 1", "Text 2", "Combined Text", "Key Text", "Similarity"]))
|
75 |
+
|
76 |
+
return html_report, df_statistics, df_similar, df_fragments, df_combined
|
77 |
+
|
78 |
+
except Exception as e:
|
79 |
+
return f"Erro ao processar: {str(e)}", None, None, None, None
|
80 |
|
81 |
+
def generate_html_report(results):
|
82 |
+
"""Generates an HTML report about the detected similarities."""
|
83 |
+
html = "<h2>Similarity Report</h2>"
|
84 |
+
|
85 |
+
# General statistics
|
86 |
+
html += "<div padding: 15px; border-radius: 5px; margin-bottom: 20px;'>"
|
87 |
+
html += f"<p><b>Total texts analyzed:</b> {results['statistics']['total_analyzed']}</p>"
|
88 |
+
html += f"<p><b>Texts with detected similarity:</b> {results['statistics']['total_processed']}</p>"
|
89 |
+
html += "</div>"
|
90 |
+
|
91 |
+
# Results table
|
92 |
+
html += "<h3>Detected Similarities</h3>"
|
93 |
+
|
94 |
+
# Similar texts
|
95 |
+
if results["similar_texts"]:
|
96 |
+
html += "<h4>Direct Similar Texts</h4>"
|
97 |
+
html += "<table width='100%' style='border-collapse: collapse; margin-bottom: 20px;'>"
|
98 |
+
html += "<tr><th style='text-align: left; padding: 8px; border: 1px solid #ddd;'>Original Text</th><th style='text-align: left; padding: 8px; border: 1px solid #ddd;'>Key Text</th><th style='text-align: center; padding: 8px; border: 1px solid #ddd;'>Similarity</th></tr>"
|
99 |
+
|
100 |
+
for item in results["similar_texts"]:
|
101 |
+
html += f"<tr><td style='padding: 8px; border: 1px solid #ddd;'>{item['text']}</td><td style='padding: 8px; border: 1px solid #ddd;'>{item['key_text']}</td><td style='text-align: center; padding: 8px; border: 1px solid #ddd;'>{item['similarity']:.2%}</td></tr>"
|
102 |
+
|
103 |
+
html += "</table>"
|
104 |
+
|
105 |
+
# Detected fragments
|
106 |
+
if results["fragments_detected"]:
|
107 |
+
html += "<h4>Text with Detected Fragments</h4>"
|
108 |
+
html += "<table width='100%' style='border-collapse: collapse; margin-bottom: 20px;'>"
|
109 |
+
html += "<tr><th style='text-align: left; padding: 8px; border: 1px solid #ddd;'>Original Text</th><th style='text-align: left; padding: 8px; border: 1px solid #ddd;'>Key Text</th><th style='text-align: center; padding: 8px; border: 1px solid #ddd;'>Similarity</th></tr>"
|
110 |
+
|
111 |
+
for item in results["fragments_detected"]:
|
112 |
+
html += f"<tr><td style='padding: 8px; border: 1px solid #ddd;'>{item['text']}</td><td style='padding: 8px; border: 1px solid #ddd;'>{item['key_text']}</td><td style='text-align: center; padding: 8px; border: 1px solid #ddd;'>{item['similarity']:.2%}</td></tr>"
|
113 |
+
|
114 |
+
html += "</table>"
|
115 |
+
|
116 |
+
# Combined texts
|
117 |
+
if results["combined"]:
|
118 |
+
html += "<h4>Text that need to be combined</h4>"
|
119 |
+
html += "<table width='100%' style='border-collapse: collapse; margin-bottom: 20px;'>"
|
120 |
+
html += "<tr><th style='text-align: left; padding: 8px; border: 1px solid #ddd;'>Text 1</th><th style='text-align: left; padding: 8px; border: 1px solid #ddd;'>Text 2</th><th style='text-align: left; padding: 8px; border: 1px solid #ddd;'>Combination</th><th style='text-align: left; padding: 8px; border: 1px solid #ddd;'>Key Text</th><th style='text-align: center; padding: 8px; border: 1px solid #ddd;'>Similarity</th></tr>"
|
121 |
+
|
122 |
+
for item in results["combined"]:
|
123 |
+
html += f"<tr><td style='padding: 8px; border: 1px solid #ddd;'>{item['texts'][0]}</td><td style='padding: 8px; border: 1px solid #ddd;'>{item['texts'][1]}</td><td style='padding: 8px; border: 1px solid #ddd;'>{item['combined_text']}</td><td style='padding: 8px; border: 1px solid #ddd;'>{item['key_text']}</td><td style='text-align: center; padding: 8px; border: 1px solid #ddd;'>{item['similarity']:.2%}</td></tr>"
|
124 |
+
|
125 |
+
html += "</table>"
|
126 |
+
|
127 |
+
if not (results["similar_texts"] or results["fragments_detected"] or results["combined"]):
|
128 |
+
html += "<p>No significant similarity found with the current parameters.</p>"
|
129 |
+
|
130 |
+
return html
|
131 |
|
132 |
+
def generate_results_dataframe(results):
|
133 |
+
"""Generates pandas DataFrames to visualize the results."""
|
134 |
+
dfs = {}
|
135 |
+
|
136 |
+
# DataFrame for similar texts
|
137 |
+
if results["similar_texts"]:
|
138 |
+
data = [(item['index'], item['text'], item['key_text'], f"{item['similarity']:.2%}")
|
139 |
+
for item in results["similar_texts"]]
|
140 |
+
dfs["similar"] = pd.DataFrame(data, columns=["Index", "Original Text", "Key Text", "Similarity"])
|
141 |
+
|
142 |
+
# DataFrame for fragments
|
143 |
+
if results["fragments_detected"]:
|
144 |
+
data = [(item['index'], item['text'], item['key_text'], f"{item['similarity']:.2%}")
|
145 |
+
for item in results["fragments_detected"]]
|
146 |
+
dfs["fragments"] = pd.DataFrame(data, columns=["Index", "Original Text", "Key Text", "Similarity"])
|
147 |
+
|
148 |
+
# DataFrame for combined
|
149 |
+
if results["combined"]:
|
150 |
+
data = [(f"{item['indices'][0]},{item['indices'][1]}",
|
151 |
+
item['texts'][0],
|
152 |
+
item['texts'][1],
|
153 |
+
item['combined_text'],
|
154 |
+
item['key_text'],
|
155 |
+
f"{item['similarity']:.2%}")
|
156 |
+
for item in results["combined"]]
|
157 |
+
dfs["combined"] = pd.DataFrame(data, columns=["Indices", "Text 1", "Text 2",
|
158 |
+
"Combined Text", "Key Text", "Similarity"])
|
159 |
+
|
160 |
+
# Statistics DataFrame
|
161 |
+
data = [
|
162 |
+
("Total analyzed", results["statistics"]["total_analyzed"]),
|
163 |
+
("Total with similarity", results["statistics"]["total_processed"]),
|
164 |
+
("Direct similarity", results["statistics"]["direct_similarity"]),
|
165 |
+
("Fragments", results["statistics"]["fragments"]),
|
166 |
+
("Combined", results["statistics"]["combined"])
|
167 |
+
]
|
168 |
+
dfs["statistics"] = pd.DataFrame(data, columns=["Metric", "Value"])
|
169 |
+
|
170 |
+
return dfs
|
171 |
+
|
172 |
+
def generate_gradio():
|
173 |
+
with gr.Blocks(title="Text Similarity Detector") as demo:
|
174 |
+
gr.Markdown("# 🔍 Text Similarity Detector with Image Extraction")
|
175 |
+
gr.Markdown("""
|
176 |
+
This tool analyzes the similarity between texts extracted from an image and reference key texts.
|
177 |
+
It can identify:
|
178 |
+
- Direct similar texts
|
179 |
+
- Key text fragments within the texts
|
180 |
+
- Text combinations that match key texts
|
181 |
+
""")
|
182 |
+
|
183 |
+
with gr.Tabs() as tabs:
|
184 |
+
with gr.TabItem("Image Analysis"):
|
185 |
+
with gr.Row():
|
186 |
+
with gr.Column(scale=1): # Column for inputs on the left
|
187 |
+
input_image = gr.Image(label="Upload an image to extract text", type="pil", height=600)
|
188 |
+
key_texts_image = gr.Textbox(
|
189 |
+
label="Key Texts for Comparison",
|
190 |
+
placeholder="Paste your key texts here (one per line)",
|
191 |
+
lines=5
|
192 |
+
)
|
193 |
+
# with gr.Row():
|
194 |
+
# key_texts_image = gr.Textbox(
|
195 |
+
# label="Key Texts for Comparison",
|
196 |
+
# placeholder="Paste your key texts here (one per line)",
|
197 |
+
# lines=5
|
198 |
+
# )
|
199 |
+
|
200 |
+
# min_similarity_per_key_image = gr.Textbox(
|
201 |
+
# label="Minimum Similarity for Each Key Text (%)",
|
202 |
+
# placeholder="Enter one value per line, matching the key texts",
|
203 |
+
# lines=5
|
204 |
+
# )
|
205 |
+
|
206 |
+
with gr.Row():
|
207 |
+
similarity_threshold_image = gr.Slider(
|
208 |
+
label="Similarity Threshold (%)",
|
209 |
+
minimum=50,
|
210 |
+
maximum=100,
|
211 |
+
value=70,
|
212 |
+
step=1
|
213 |
+
)
|
214 |
+
fragment_threshold_image = gr.Slider(
|
215 |
+
label="Fragment Similarity Threshold (%)",
|
216 |
+
minimum=50,
|
217 |
+
maximum=100,
|
218 |
+
value=70,
|
219 |
+
step=1
|
220 |
+
)
|
221 |
+
|
222 |
+
analyze_image_btn = gr.Button("Analyze Image", variant="primary")
|
223 |
+
|
224 |
+
with gr.Column(scale=1): # Column for outputs on the right
|
225 |
+
gpu_available = gr.Checkbox(label="Used GPU")
|
226 |
+
extracted_texts = gr.Textbox(label="Extracted Texts from the Image", lines=5)
|
227 |
+
html_output = gr.HTML(label="Similarity Report")
|
228 |
+
with gr.Tabs():
|
229 |
+
with gr.TabItem("Statistics"):
|
230 |
+
statistics_output = gr.Dataframe(label="Statistics")
|
231 |
+
with gr.TabItem("Direct Similarity"):
|
232 |
+
similar_texts_output = gr.Dataframe(label="Direct Similar Texts")
|
233 |
+
with gr.TabItem("Fragments"):
|
234 |
+
fragments_output = gr.Dataframe(label="Texts with Fragments")
|
235 |
+
with gr.TabItem("Combined"):
|
236 |
+
combined_output = gr.Dataframe(label="Combined Texts")
|
237 |
+
|
238 |
+
with gr.TabItem("Manual Analysis"):
|
239 |
+
with gr.Row():
|
240 |
+
with gr.Column(scale=1): # Column for inputs on the left
|
241 |
+
input_texts = gr.Textbox(
|
242 |
+
label="List of Texts for Analysis",
|
243 |
+
placeholder="Paste your list of texts here (one per line)",
|
244 |
+
lines=10
|
245 |
+
)
|
246 |
+
key_texts_input = gr.Textbox(
|
247 |
+
label="Key Texts for Comparison",
|
248 |
+
placeholder="Paste your key texts here (one per line)",
|
249 |
+
lines=5
|
250 |
+
)
|
251 |
+
# with gr.Row():
|
252 |
+
# key_texts_input = gr.Textbox(
|
253 |
+
# label="Key Texts for Comparison",
|
254 |
+
# placeholder="Paste your key texts here (one per line)",
|
255 |
+
# lines=5
|
256 |
+
# )
|
257 |
+
|
258 |
+
# min_similarity_per_key_input = gr.Textbox(
|
259 |
+
# label="Minimum Similarity for Each Key Text (%)",
|
260 |
+
# placeholder="Enter one value per line, matching the key texts",
|
261 |
+
# lines=5
|
262 |
+
# )
|
263 |
+
|
264 |
+
with gr.Row():
|
265 |
+
similarity_threshold = gr.Slider(
|
266 |
+
label="Similarity Threshold (%)",
|
267 |
+
minimum=50,
|
268 |
+
maximum=100,
|
269 |
+
value=70,
|
270 |
+
step=1
|
271 |
+
)
|
272 |
+
fragment_threshold = gr.Slider(
|
273 |
+
label="Fragment Similarity Threshold (%)",
|
274 |
+
minimum=50,
|
275 |
+
maximum=100,
|
276 |
+
value=70,
|
277 |
+
step=1
|
278 |
+
)
|
279 |
+
|
280 |
+
analyze_btn = gr.Button("Analyze Image", variant="primary")
|
281 |
+
|
282 |
+
with gr.Column(scale=1): # Column for outputs on the right
|
283 |
+
html_output_manual = gr.HTML(label="Manual Similarity Report")
|
284 |
+
with gr.Tabs():
|
285 |
+
with gr.TabItem("Statistics"):
|
286 |
+
statistics_output_manual = gr.Dataframe(label="Statistics")
|
287 |
+
with gr.TabItem("Direct Similarity"):
|
288 |
+
similar_texts_output_manual = gr.Dataframe(label="Direct Similar Texts")
|
289 |
+
with gr.TabItem("Fragments"):
|
290 |
+
fragments_output_manual = gr.Dataframe(label="Texts with Fragments")
|
291 |
+
with gr.TabItem("Combined"):
|
292 |
+
combined_output_manual = gr.Dataframe(label="Combined Texts")
|
293 |
+
|
294 |
+
# Connect the image processing function to the button
|
295 |
+
analyze_image_btn.click(
|
296 |
+
process_image,
|
297 |
+
inputs=[input_image, key_texts_image, similarity_threshold_image, fragment_threshold_image],
|
298 |
+
outputs=[html_output, statistics_output, similar_texts_output, fragments_output, combined_output, extracted_texts, gpu_available]
|
299 |
+
)
|
300 |
+
|
301 |
+
# Connect the manual text processing function to the button
|
302 |
+
analyze_btn.click(
|
303 |
+
process_manual_input,
|
304 |
+
inputs=[input_texts, key_texts_input, similarity_threshold, fragment_threshold],
|
305 |
+
outputs=[html_output_manual, statistics_output_manual, similar_texts_output_manual, fragments_output_manual, combined_output_manual]
|
306 |
+
)
|
307 |
+
|
308 |
+
return demo
|
309 |
+
|
310 |
+
#app = gr.mount_gradio_app(app, demo, path="/")
|
311 |
+
|
312 |
+
if __name__ == "__main__":
|
313 |
+
generate_gradio.launch()
|
314 |
+
|
315 |
+
# PORT = int(os.getenv("PORT", 7860))
|
316 |
+
|
317 |
+
# if __name__ == "__main__":
|
318 |
+
# import uvicorn
|
319 |
+
# print(f"A arrancar na porta {PORT}...")
|
320 |
+
# uvicorn.run(app)
|
321 |
+
|
322 |
+
#demo.launch(server_name="0.0.0.0", server_port=7860)
|
extract_text.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import easyocr
|
4 |
+
import torch
|
5 |
+
|
6 |
+
# Inicializar EasyOCR
|
7 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
+
reader = easyocr.Reader(["en"], gpu=(device == "cuda"), verbose=False)
|
9 |
+
|
10 |
+
def extract_text_from_image(img, gpu_available):
|
11 |
+
reader = easyocr.Reader(['en'], gpu=gpu_available, verbose=False)
|
12 |
+
|
13 |
+
img = np.array(img)
|
14 |
+
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
15 |
+
|
16 |
+
# Resizing and blurring
|
17 |
+
scale_factor = 2
|
18 |
+
upscaled = cv2.resize(img, None, fx=scale_factor, fy=scale_factor, interpolation=cv2.INTER_LINEAR)
|
19 |
+
blur_img = cv2.blur(upscaled, (5, 5))
|
20 |
+
|
21 |
+
all_text_found = []
|
22 |
+
text_ = reader.readtext(blur_img, detail=1, paragraph=False, text_threshold=0.3)
|
23 |
+
|
24 |
+
for t in text_:
|
25 |
+
bbox, text, score = t
|
26 |
+
if score > 0.1: # Filter weak detections
|
27 |
+
all_text_found.append(text)
|
28 |
+
|
29 |
+
return all_text_found
|
main.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import requests
|
5 |
+
import torch
|
6 |
+
import base64
|
7 |
+
import gradio as gr
|
8 |
+
from PIL import Image
|
9 |
+
from io import BytesIO
|
10 |
+
from fastapi import FastAPI
|
11 |
+
from models import TextSimilarityRequest
|
12 |
+
from extract_text import extract_text_from_image
|
13 |
+
from text_similarity import analyze_similarity
|
14 |
+
from app import generate_gradio
|
15 |
+
|
16 |
+
|
17 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
18 |
+
app = FastAPI()
|
19 |
+
|
20 |
+
@app.get("/teste", tags=["Home"])
|
21 |
+
def api_home():
|
22 |
+
return "oi"
|
23 |
+
|
24 |
+
|
25 |
+
@app.post("/text_similarity", summary="Perform images text similarity", response_model=float, tags=["Text Similarities"])
|
26 |
+
async def text_similarity(request: TextSimilarityRequest):
|
27 |
+
image_info = request.imageInfo
|
28 |
+
key_texts = request.keyTexts
|
29 |
+
similarity_threshold = request.similarityThreshold
|
30 |
+
origin_id = image_info.originId
|
31 |
+
|
32 |
+
logging.info(f"Checking text similarity for main source with resource id {origin_id}")
|
33 |
+
|
34 |
+
image = load_image_url(image_info.source)
|
35 |
+
|
36 |
+
# Extract text from the image using the user's method
|
37 |
+
gpu_available = torch.cuda.is_available()
|
38 |
+
extracted_texts = extract_text_from_image(image, gpu_available)
|
39 |
+
|
40 |
+
results = analyze_similarity(
|
41 |
+
extracted_texts,
|
42 |
+
key_texts,
|
43 |
+
similarity_threshold=similarity_threshold/100, # Convert percentage to decimal
|
44 |
+
fragment_threshold=100/100 # Convert percentage to decimal
|
45 |
+
)
|
46 |
+
|
47 |
+
log_similarity_report(results, origin_id)
|
48 |
+
|
49 |
+
total_texts = len(key_texts)
|
50 |
+
passed_texts = results["statistics"]["total_processed"]
|
51 |
+
|
52 |
+
percentage_passed = (passed_texts / total_texts) * 100
|
53 |
+
|
54 |
+
logging.info(f"Text similarity for main source with resource id {origin_id} is {percentage_passed}%")
|
55 |
+
|
56 |
+
return percentage_passed
|
57 |
+
|
58 |
+
def log_similarity_report(results, originId):
|
59 |
+
# General statistics
|
60 |
+
logging.info(f"[{originId}] Total texts analyzed: {results['statistics']['total_analyzed']}")
|
61 |
+
logging.info(f"[{originId}] Texts with detected similarity: {results['statistics']['total_processed']}")
|
62 |
+
|
63 |
+
# Similar texts
|
64 |
+
if results["similar_texts"]:
|
65 |
+
logging.info(f"[{originId}] Direct Similar Texts Found: {len(results['similar_texts'])}")
|
66 |
+
for item in results["similar_texts"]:
|
67 |
+
logging.info(f"[{originId}] Similar Text: '{item['text']}' -> Key Text: '{item['key_text']}' with Similarity: {item['similarity']:.2%}")
|
68 |
+
|
69 |
+
# Detected fragments
|
70 |
+
if results["fragments_detected"]:
|
71 |
+
logging.info(f"[{originId}] Fragments Detected: {len(results['fragments_detected'])}")
|
72 |
+
for item in results["fragments_detected"]:
|
73 |
+
logging.info(f"[{originId}] Fragment: '{item['text']}' -> Key Text: '{item['key_text']}' with Similarity: {item['similarity']:.2%}")
|
74 |
+
|
75 |
+
# Combined texts
|
76 |
+
if results["combined"]:
|
77 |
+
logging.info(f"[{originId}] Texts to be Combined: {len(results['combined'])}")
|
78 |
+
for item in results["combined"]:
|
79 |
+
logging.info(f"[{originId}] Combined Text: '{item['combined_text']}' -> Key Text: '{item['key_text']}' with Similarity: {item['similarity']:.2%}")
|
80 |
+
|
81 |
+
# If no significant similarity found
|
82 |
+
if not (results["similar_texts"] or results["fragments_detected"] or results["combined"]):
|
83 |
+
logging.info(f"[{originId}] No significant similarity found.")
|
84 |
+
|
85 |
+
# Statistics
|
86 |
+
logging.info(f"[{originId}] Direct similarity: {results['statistics']['direct_similarity']}")
|
87 |
+
logging.info(f"[{originId}] Fragments: {results['statistics']['fragments']}")
|
88 |
+
logging.info(f"[{originId}] Combined: {results['statistics']['combined']}")
|
89 |
+
|
90 |
+
def load_image_url(source):
|
91 |
+
Image.MAX_IMAGE_PIXELS = None
|
92 |
+
|
93 |
+
if source.startswith('http'):
|
94 |
+
response = requests.get(source)
|
95 |
+
img = np.asarray(bytearray(response.content), dtype=np.uint8)
|
96 |
+
img = cv2.imdecode(img, cv2.IMREAD_GRAYSCALE)
|
97 |
+
else:
|
98 |
+
img = base64.b64decode(source)
|
99 |
+
img = Image.open(BytesIO(img))
|
100 |
+
img = np.array(img)
|
101 |
+
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
102 |
+
|
103 |
+
return img
|
104 |
+
|
105 |
+
@app.on_event("startup")
|
106 |
+
async def startup_event():
|
107 |
+
gr.mount_gradio_app(app, generate_gradio(), path="/")
|
models.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pydantic import BaseModel
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
class RequestModel(BaseModel):
|
5 |
+
originId: int
|
6 |
+
source: str
|
7 |
+
|
8 |
+
class TextSimilarityRequest(BaseModel):
|
9 |
+
imageInfo: RequestModel
|
10 |
+
keyTexts: List[str]
|
11 |
+
similarityThreshold: float
|
requirements.txt
CHANGED
@@ -1,7 +1,11 @@
|
|
1 |
-
|
2 |
-
uvicorn
|
3 |
requests
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
|
|
2 |
requests
|
3 |
+
fastapi
|
4 |
+
pydantic
|
5 |
+
scikit-image
|
6 |
+
pillow
|
7 |
+
uvicorn
|
8 |
+
opencv-python-headless
|
9 |
+
torch
|
10 |
+
easyocr
|
11 |
+
gradio
|
text_similarity.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from difflib import SequenceMatcher
|
3 |
+
from collections import defaultdict
|
4 |
+
|
5 |
+
def extract_special_characters(text):
|
6 |
+
"""Extracts all unique special characters from a list of texts."""
|
7 |
+
characters = re.findall(r'[^\w\s]', text) # Finds non-alphanumeric and non-space characters
|
8 |
+
return ''.join(characters)
|
9 |
+
|
10 |
+
def clean_text(text, keep=""):
|
11 |
+
"""Removes special characters except those specified in 'keep', and converts to lowercase."""
|
12 |
+
pattern = rf'[^\w\s{re.escape(keep)}]'
|
13 |
+
return re.sub(pattern, '', text.lower())
|
14 |
+
|
15 |
+
def text_similarity(text, key_text):
|
16 |
+
"""Calculates the similarity between two texts using SequenceMatcher."""
|
17 |
+
return SequenceMatcher(None, text, key_text).ratio()
|
18 |
+
|
19 |
+
def detect_fragments(text, key_texts, threshold=0.7):
|
20 |
+
"""Checks if a text contains fragments of key texts."""
|
21 |
+
for key_text in key_texts:
|
22 |
+
characters_to_not_clean = extract_special_characters(key_text)
|
23 |
+
words = clean_text(text, characters_to_not_clean).split()
|
24 |
+
|
25 |
+
key_words = key_text.split()
|
26 |
+
|
27 |
+
# If the text is too short, we can't make an effective sliding window
|
28 |
+
if len(words) < len(key_words):
|
29 |
+
similarity = text_similarity(text, key_text)
|
30 |
+
if similarity >= threshold:
|
31 |
+
return True, key_text, similarity
|
32 |
+
continue
|
33 |
+
|
34 |
+
# Sliding window to compare word sequences
|
35 |
+
for i in range(len(words) - len(key_words) + 1):
|
36 |
+
fragment = " ".join(words[i:i+len(key_words)])
|
37 |
+
similarity = text_similarity(fragment, key_text)
|
38 |
+
if similarity >= threshold:
|
39 |
+
return True, key_text, similarity
|
40 |
+
return False, None, 0
|
41 |
+
|
42 |
+
def analyze_similarity(text_list, key_texts, similarity_threshold=0.7, fragment_threshold=0.7):
|
43 |
+
"""
|
44 |
+
Analyzes the similarity between a list of texts and key texts.
|
45 |
+
Returns a detailed report on the similarities found.
|
46 |
+
"""
|
47 |
+
results = {
|
48 |
+
"similar_texts": [],
|
49 |
+
"fragments_detected": [],
|
50 |
+
"combined": [],
|
51 |
+
"statistics": defaultdict(int)
|
52 |
+
}
|
53 |
+
|
54 |
+
processed_texts = set()
|
55 |
+
|
56 |
+
# Check direct similarity
|
57 |
+
for i, text in enumerate(text_list):
|
58 |
+
if not text.strip():
|
59 |
+
continue
|
60 |
+
|
61 |
+
for key_text in key_texts:
|
62 |
+
if not key_text.strip():
|
63 |
+
continue
|
64 |
+
|
65 |
+
similarity = text_similarity(text, key_text)
|
66 |
+
if similarity >= similarity_threshold:
|
67 |
+
results["similar_texts"].append({
|
68 |
+
"index": i,
|
69 |
+
"text": text,
|
70 |
+
"key_text": key_text,
|
71 |
+
"similarity": similarity
|
72 |
+
})
|
73 |
+
results["statistics"]["direct_similarity"] += 1
|
74 |
+
processed_texts.add(i)
|
75 |
+
|
76 |
+
# Check fragments
|
77 |
+
# for i, text in enumerate(text_list):
|
78 |
+
# if i in processed_texts or not text.strip():
|
79 |
+
# continue
|
80 |
+
|
81 |
+
# has_fragment, key_text, similarity = detect_fragments(text, key_texts, fragment_threshold)
|
82 |
+
# if has_fragment:
|
83 |
+
# results["fragments_detected"].append({
|
84 |
+
# "index": i,
|
85 |
+
# "text": text,
|
86 |
+
# "key_text": key_text,
|
87 |
+
# "similarity": similarity
|
88 |
+
# })
|
89 |
+
# results["statistics"]["fragments"] += 1
|
90 |
+
# processed_texts.add(i)
|
91 |
+
|
92 |
+
# Check texts that can be combined
|
93 |
+
for i in range(len(text_list)):
|
94 |
+
if i in processed_texts or not text_list[i].strip():
|
95 |
+
continue
|
96 |
+
|
97 |
+
for j in range(i+1, len(text_list)):
|
98 |
+
if j in processed_texts or not text_list[j].strip():
|
99 |
+
continue
|
100 |
+
|
101 |
+
combined_text = text_list[i] + " " + text_list[j]
|
102 |
+
for key_text in key_texts:
|
103 |
+
if not key_text.strip():
|
104 |
+
continue
|
105 |
+
|
106 |
+
similarity = text_similarity(combined_text, key_text)
|
107 |
+
if similarity >= similarity_threshold:
|
108 |
+
results["combined"].append({
|
109 |
+
"indices": [i, j],
|
110 |
+
"texts": [text_list[i], text_list[j]],
|
111 |
+
"combined_text": combined_text,
|
112 |
+
"key_text": key_text,
|
113 |
+
"similarity": similarity
|
114 |
+
})
|
115 |
+
results["statistics"]["combined"] += 1
|
116 |
+
processed_texts.add(i)
|
117 |
+
processed_texts.add(j)
|
118 |
+
break
|
119 |
+
|
120 |
+
# Calculate overall statistics
|
121 |
+
valid_texts = sum(1 for text in text_list if text.strip())
|
122 |
+
results["statistics"]["total_analyzed"] = valid_texts
|
123 |
+
results["statistics"]["total_processed"] = len(processed_texts)
|
124 |
+
|
125 |
+
return results
|