similarity / similarity.py
MarioPrzBasto's picture
Update similarity.py
37a0d36 verified
raw
history blame
2.47 kB
import base64
from typing import List
from skimage.metrics import structural_similarity as ssim
import cv2
import numpy as np
import requests
from models import RequestModel, ResponseModel
from PIL import Image
from io import BytesIO
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
def orb_sim(img1, img2):
score = 0
try:
orb = cv2.ORB_create()
kp_a, desc_a = orb.detectAndCompute(img1, None)
kp_b, desc_b = orb.detectAndCompute(img2, None)
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
matches = bf.match(desc_a, desc_b)
similar_regions = [i for i in matches if i.distance < 20]
if len(matches) > 0:
score = len(similar_regions) / len(matches)
except Exception as e:
logging.error("Erro ao verificar similaridade ORB", exc_info=True)
return score
def load_image_url(source):
Image.MAX_IMAGE_PIXELS = None
if source.startswith('http'):
response = requests.get(source)
img = np.asarray(bytearray(response.content), dtype=np.uint8)
img = cv2.imdecode(img, cv2.IMREAD_GRAYSCALE)
else:
img = base64.b64decode(source)
img = Image.open(BytesIO(img))
img = np.array(img)
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
return img
def check_similarity(images: List[RequestModel]):
logging.info(f"Checking similarity for main source with resource id {images[0].originId}")
original_image = load_image_url(images[0].source)
original_image_shape = original_image.shape
results = []
for i in range(1, len(images)):
try:
image = load_image_url(images[i].source)
image = cv2.resize(image, original_image_shape[::-1])
s, _ = ssim(original_image, image, full=True)
similarity_score = (s + 1) * 50
similarity_orb_score = orb_sim(original_image, image) * 100
except Exception as e:
logging.error(f"Error loading image for resource id {images[i].originId} : {e}")
similarity_score = 0
similarity_orb_score = 0
response = ResponseModel(originId=images[i].originId, source=images[i].source, sequence=images[i].sequence,
assetCode=images[i].assetCode, similarity=similarity_score, similarityOrb=similarity_orb_score)
results.append(response)
return results