similarity / similarity.py
MarioPrzBasto's picture
Update similarity.py
06cdb0c verified
raw
history blame
4.42 kB
import base64
import cv2
import numpy as np
import requests
import logging
from typing import List
from tensorflow.keras.applications import MobileNetV2
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
from tensorflow.keras.models import Model
from tensorflow.keras.preprocessing.image import img_to_array
from sklearn.metrics.pairwise import cosine_similarity
from skimage.metrics import structural_similarity as ssim
from models import RequestModel, ResponseModel
from PIL import Image
from io import BytesIO
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
mobilenet = MobileNetV2(weights="imagenet", include_top=False, pooling='avg')
def preprocess_image_for_mobilenet(image):
if len(image.shape) == 2:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
elif image.shape[2] == 1:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
else:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = cv2.resize(image, (224, 224))
image = img_to_array(image)
image = np.expand_dims(image, axis=0)
image = preprocess_input(image)
return image
def mobilenet_sim(img1, img2, img1AssetCode, img2AssetCode):
try:
img1_proc = preprocess_image_for_mobilenet(img1)
img2_proc = preprocess_image_for_mobilenet(img2)
feat1 = mobilenet.predict(img1_proc, verbose=0)
feat2 = mobilenet.predict(img2_proc, verbose=0)
sim = cosine_similarity(feat1, feat2)[0][0]
sim_score = (sim + 1) * 50
print(f"MobileNet similarity score from {img1AssetCode} and {img2AssetCode} is {sim_score}")
return float(sim_score)
except Exception as e:
logging.error("Erro ao calcular similaridade com MobileNet", exc_info=True)
return 0
def orb_sim(img1, img2, img1AssetCode, img2AssetCode):
score = 0
try:
orb = cv2.ORB_create()
kp_a, desc_a = orb.detectAndCompute(img1, None)
kp_b, desc_b = orb.detectAndCompute(img2, None)
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
matches = bf.match(desc_a, desc_b)
similar_regions = [i for i in matches if i.distance < 20]
if len(matches) > 0:
score = (len(similar_regions) / len(matches)) * 100
if (score > 0):
logging.info(f"Orb score from {img1AssetCode} and {img2AssetCode} is {score}")
except Exception as e:
logging.error("Erro ao verificar similaridade ORB", exc_info=True)
return 1 if 0 < score < 1 else score
def ssim_sim(img1, img2):
s, _ = ssim(img1, img2, full=True)
return (s + 1) * 50
def load_image_url(source):
Image.MAX_IMAGE_PIXELS = None
if source.startswith('http'):
response = requests.get(source)
img = np.asarray(bytearray(response.content), dtype=np.uint8)
img = cv2.imdecode(img, cv2.IMREAD_GRAYSCALE)
else:
img = base64.b64decode(source)
img = Image.open(BytesIO(img))
img = np.array(img)
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
return img
def check_similarity(images: List[RequestModel]):
logging.info(f"Checking similarity for main source with resource id {images[0].originId}")
original_image = load_image_url(images[0].source)
original_image_shape = original_image.shape
results = []
for i in range(1, len(images)):
try:
image = load_image_url(images[i].source)
image = cv2.resize(image, original_image_shape[::-1])
similarity_score = ssim_sim(original_image, image)
similarity_orb_score = orb_sim(original_image, image, images[0].assetCode, images[i].assetCode)
similarity_mobilenet_score = mobilenet_sim(original_image, image, images[0].assetCode, images[i].assetCode)
except Exception as e:
logging.error(f"Error loading image for resource id {images[i].originId} : {e}")
similarity_score = 0
similarity_orb_score = 0
similarity_mobilenet_score = 0
response = ResponseModel(originId=images[i].originId, source=images[i].source, sequence=images[i].sequence,
assetCode=images[i].assetCode, similarity=similarity_score, similarityOrb=similarity_orb_score, similarityMobileNet=similarity_mobilenet_score)
results.append(response)
return results