Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update similarity.py
Browse files- similarity.py +47 -6
similarity.py
CHANGED
@@ -1,16 +1,52 @@
|
|
1 |
import base64
|
2 |
-
from typing import List
|
3 |
-
from skimage.metrics import structural_similarity as ssim
|
4 |
import cv2
|
5 |
import numpy as np
|
6 |
import requests
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
from models import RequestModel, ResponseModel
|
8 |
from PIL import Image
|
9 |
from io import BytesIO
|
10 |
-
import logging
|
11 |
|
12 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
def orb_sim(img1, img2):
|
15 |
score = 0
|
16 |
|
@@ -31,6 +67,10 @@ def orb_sim(img1, img2):
|
|
31 |
|
32 |
return score
|
33 |
|
|
|
|
|
|
|
|
|
34 |
|
35 |
def load_image_url(source):
|
36 |
Image.MAX_IMAGE_PIXELS = None
|
@@ -59,16 +99,17 @@ def check_similarity(images: List[RequestModel]):
|
|
59 |
try:
|
60 |
image = load_image_url(images[i].source)
|
61 |
image = cv2.resize(image, original_image_shape[::-1])
|
62 |
-
|
63 |
-
similarity_score = (
|
64 |
similarity_orb_score = orb_sim(original_image, image) * 100
|
|
|
65 |
except Exception as e:
|
66 |
logging.error(f"Error loading image for resource id {images[i].originId} : {e}")
|
67 |
similarity_score = 0
|
68 |
similarity_orb_score = 0
|
69 |
|
70 |
response = ResponseModel(originId=images[i].originId, source=images[i].source, sequence=images[i].sequence,
|
71 |
-
assetCode=images[i].assetCode, similarity=similarity_score, similarityOrb=similarity_orb_score)
|
72 |
results.append(response)
|
73 |
|
74 |
return results
|
|
|
1 |
import base64
|
|
|
|
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
import requests
|
5 |
+
import logging
|
6 |
+
from typing import List
|
7 |
+
from tensorflow.keras.applications import MobileNetV2
|
8 |
+
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
|
9 |
+
from tensorflow.keras.models import Model
|
10 |
+
from tensorflow.keras.preprocessing.image import img_to_array
|
11 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
12 |
+
from skimage.metrics import structural_similarity as ssim
|
13 |
from models import RequestModel, ResponseModel
|
14 |
from PIL import Image
|
15 |
from io import BytesIO
|
|
|
16 |
|
17 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
18 |
|
19 |
+
def preprocess_image_for_mobilenet(image):
|
20 |
+
if len(image.shape) == 2:
|
21 |
+
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
|
22 |
+
elif image.shape[2] == 1:
|
23 |
+
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
|
24 |
+
else:
|
25 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
26 |
+
|
27 |
+
image = cv2.resize(image, (224, 224))
|
28 |
+
image = img_to_array(image)
|
29 |
+
image = np.expand_dims(image, axis=0)
|
30 |
+
image = preprocess_input(image)
|
31 |
+
|
32 |
+
return image
|
33 |
+
|
34 |
+
def mobilenet_sim(img1, img2):
|
35 |
+
try:
|
36 |
+
img1_proc = preprocess_image_for_mobilenet(img1)
|
37 |
+
img2_proc = preprocess_image_for_mobilenet(img2)
|
38 |
+
|
39 |
+
feat1 = mobilenet.predict(img1_proc, verbose=0)
|
40 |
+
feat2 = mobilenet.predict(img2_proc, verbose=0)
|
41 |
+
|
42 |
+
sim = cosine_similarity(feat1, feat2)[0][0]
|
43 |
+
sim_score = (sim + 1) * 50
|
44 |
+
print(f"MobileNet similarity score is {sim_score}")
|
45 |
+
return float(sim_score)
|
46 |
+
except Exception as e:
|
47 |
+
logging.error("Erro ao calcular similaridade com MobileNet", exc_info=True)
|
48 |
+
return 0
|
49 |
+
|
50 |
def orb_sim(img1, img2):
|
51 |
score = 0
|
52 |
|
|
|
67 |
|
68 |
return score
|
69 |
|
70 |
+
def ssim_sim(img1, img2):
|
71 |
+
s, _ = ssim(img1, img2, full=True)
|
72 |
+
return (s + 1) * 50
|
73 |
+
|
74 |
|
75 |
def load_image_url(source):
|
76 |
Image.MAX_IMAGE_PIXELS = None
|
|
|
99 |
try:
|
100 |
image = load_image_url(images[i].source)
|
101 |
image = cv2.resize(image, original_image_shape[::-1])
|
102 |
+
|
103 |
+
similarity_score = ssim_sim(original_image, image)
|
104 |
similarity_orb_score = orb_sim(original_image, image) * 100
|
105 |
+
similarity_mobilenet_score = mobilenet_sim(original_image, image)
|
106 |
except Exception as e:
|
107 |
logging.error(f"Error loading image for resource id {images[i].originId} : {e}")
|
108 |
similarity_score = 0
|
109 |
similarity_orb_score = 0
|
110 |
|
111 |
response = ResponseModel(originId=images[i].originId, source=images[i].source, sequence=images[i].sequence,
|
112 |
+
assetCode=images[i].assetCode, similarity=similarity_score, similarityOrb=similarity_orb_score, similarityMobileNet=similarity_mobilenet_score)
|
113 |
results.append(response)
|
114 |
|
115 |
return results
|