Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update similarity.py
Browse files- similarity.py +24 -12
similarity.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import base64
|
2 |
-
import io
|
3 |
from typing import List
|
4 |
from skimage.metrics import structural_similarity as ssim
|
5 |
import cv2
|
@@ -7,21 +6,28 @@ import numpy as np
|
|
7 |
import requests
|
8 |
from models import RequestModel, ResponseModel
|
9 |
from PIL import Image
|
10 |
-
|
|
|
|
|
|
|
11 |
|
12 |
def load_image_url(source):
|
|
|
|
|
13 |
if source.startswith('http'):
|
14 |
-
|
|
|
|
|
15 |
else:
|
16 |
-
|
17 |
-
img = Image.open(
|
|
|
|
|
18 |
|
19 |
-
img = np.array(img.convert('L'))
|
20 |
return img
|
21 |
|
22 |
-
|
23 |
def check_similarity(images: List[RequestModel]):
|
24 |
-
|
25 |
|
26 |
original_image = load_image_url(images[0].source)
|
27 |
original_image_shape = original_image.shape
|
@@ -29,11 +35,17 @@ def check_similarity(images: List[RequestModel]):
|
|
29 |
results = []
|
30 |
|
31 |
for i in range(1, len(images)):
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
36 |
response = ResponseModel(originId=images[i].originId, sequence=images[i].sequence,
|
37 |
assetCode=images[i].assetCode, similarity=similarity_score)
|
38 |
results.append(response)
|
|
|
39 |
return results
|
|
|
1 |
import base64
|
|
|
2 |
from typing import List
|
3 |
from skimage.metrics import structural_similarity as ssim
|
4 |
import cv2
|
|
|
6 |
import requests
|
7 |
from models import RequestModel, ResponseModel
|
8 |
from PIL import Image
|
9 |
+
from io import BytesIO
|
10 |
+
import logging
|
11 |
+
|
12 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
13 |
|
14 |
def load_image_url(source):
|
15 |
+
Image.MAX_IMAGE_PIXELS = None
|
16 |
+
|
17 |
if source.startswith('http'):
|
18 |
+
response = requests.get(source)
|
19 |
+
img = np.asarray(bytearray(response.content), dtype=np.uint8)
|
20 |
+
img = cv2.imdecode(img, cv2.IMREAD_GRAYSCALE)
|
21 |
else:
|
22 |
+
img = base64.b64decode(source)
|
23 |
+
img = Image.open(BytesIO(img))
|
24 |
+
img = np.array(img)
|
25 |
+
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
26 |
|
|
|
27 |
return img
|
28 |
|
|
|
29 |
def check_similarity(images: List[RequestModel]):
|
30 |
+
logging.info(f"Checking similarity for main source with resource id {images[0].originId}")
|
31 |
|
32 |
original_image = load_image_url(images[0].source)
|
33 |
original_image_shape = original_image.shape
|
|
|
35 |
results = []
|
36 |
|
37 |
for i in range(1, len(images)):
|
38 |
+
try:
|
39 |
+
image = load_image_url(images[i].source)
|
40 |
+
image = cv2.resize(image, original_image_shape[::-1])
|
41 |
+
s, _ = ssim(original_image, image, full=True)
|
42 |
+
similarity_score = (s + 1) * 50
|
43 |
+
except Exception as e:
|
44 |
+
logging.error(f"Error loading image for resource id {images[i].originId} : {e}")
|
45 |
+
similarity_score = 0
|
46 |
+
|
47 |
response = ResponseModel(originId=images[i].originId, sequence=images[i].sequence,
|
48 |
assetCode=images[i].assetCode, similarity=similarity_score)
|
49 |
results.append(response)
|
50 |
+
|
51 |
return results
|