File size: 5,780 Bytes
9c36111
14b8c90
0d2544a
de0f224
0d2544a
 
de0f224
 
 
45b771c
 
 
 
 
 
 
 
 
 
 
 
 
074844f
45b771c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c36111
 
 
0d2544a
 
 
14b8c90
c8aef77
 
45b771c
 
 
 
 
 
 
 
 
 
 
 
 
c8aef77
45b771c
0d2544a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c36111
0d2544a
 
 
8f0b65d
2a8236b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f0b65d
2a8236b
8f0b65d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from typing import List
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse
from models import RequestModel
import os
import json
import cv2
import numpy as np
import httpx 

BASE_DIR = "saved_data"
app = FastAPI()

def orb_sim(img1, img2):
    # ORB
    orb = cv2.ORB_create()
    kp_a, desc_a = orb.detectAndCompute(img1, None)
    kp_b, desc_b = orb.detectAndCompute(img2, None)

    # Brute-force matcher
    bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
    matches = bf.match(desc_a, desc_b)
    similar_regions = [i for i in matches if i.distance < 10]
    if len(matches) == 0:
        return 0
    return len(similar_regions) / len(matches)

async def load_image(image_path: str):
    """Carrega uma imagem a partir de um caminho de arquivo ou URL."""
    try:
        if image_path.startswith("http://") or image_path.startswith("https://"):
            async with httpx.AsyncClient() as client:
                response = await client.get(image_path)
                response.raise_for_status()
                image_bytes = np.frombuffer(response.content, np.uint8)
                img = cv2.imdecode(image_bytes, cv2.IMREAD_COLOR)
                return img
        else:
            img = cv2.imread(image_path)
            return img
    except Exception as e:
        print(f"Erro ao carregar a imagem {image_path}: {e}")
        return None

app = FastAPI()

BASE_DIR = "/tmp/data"

@app.post("/save")
async def save(image_data: RequestModel):
    os.makedirs(BASE_DIR, exist_ok=True)
    filename = os.path.join(BASE_DIR, f"{image_data.originId}_{image_data.assetCode}.json")

    img1 = await load_image(image_data.originSource)
    img2 = await load_image(image_data.source)

    similarity_orb = None
    if img1 is not None and img2 is not None:
        similarity_orb = orb_sim(img1, img2)
        print(f"Similaridade ORB entre {image_data.originSource} e {image_data.source}: {similarity_orb}")

    data_to_save = image_data.dict()
    if similarity_orb is not None:
        data_to_save["similarityOrb"] = similarity_orb

    with open(filename, "w") as f:
        json.dump(data_to_save, f, indent=4)
    return True

@app.get("/files")
async def list_files():
    try:
        files_data = []
        for filename in os.listdir(BASE_DIR):
            filepath = os.path.join(BASE_DIR, filename)
            if os.path.isfile(filepath):
                try:
                    with open(filepath, "r") as f:
                        file_content = f.read()  # Lê o conteúdo do ficheiro
                        # Tenta decodificar o conteúdo como JSON, se possível
                        try:
                            file_content_json = json.loads(file_content)
                            files_data.append({"filename": filename, "content": file_content_json})
                        except json.JSONDecodeError:
                            files_data.append({"filename": filename, "content": file_content}) # Se não for JSON, retorna o texto
                except (IOError, OSError) as e:
                    raise HTTPException(status_code=500, detail=f"Erro ao ler o ficheiro {filename}: {e}")

        return JSONResponse({"files_data": files_data})
    except FileNotFoundError:
        raise HTTPException(status_code=404, detail="Diretório de dados não encontrado")

@app.get("/files/similar")
async def list_similar_files():
    try:
        files_data = []
        for filename in os.listdir(BASE_DIR):
            filepath = os.path.join(BASE_DIR, filename)
            if os.path.isfile(filepath):
                try:
                    with open(filepath, "r") as f:
                        file_content = f.read()
                        try:
                            file_content_json = json.loads(file_content)
                            # Check for similarityOrb and filter
                            if "similarityOrb" in file_content_json and file_content_json["similarityOrb"] > 0:
                                files_data.append({"filename": filename, "content": file_content_json})
                        except json.JSONDecodeError:
                            pass  # Skip files that are not valid JSON
                except (IOError, OSError) as e:
                    raise HTTPException(status_code=500, detail=f"Erro ao ler o ficheiro {filename}: {e}")
        return JSONResponse({"files_data": files_data})
    except FileNotFoundError:
        raise HTTPException(status_code=404, detail="Diretório de dados não encontrado")

@app.get("/files/find/{origin_id}")
async def get_file_by_origin_id(origin_id: int):
    try:
        for filename in os.listdir(BASE_DIR):
            if filename.startswith(f"{origin_id}_") and filename.endswith(".json"):
                filepath = os.path.join(BASE_DIR, filename)
                if os.path.isfile(filepath):
                    try:
                        with open(filepath, "r") as f:
                            file_content = f.read()
                            try:
                                file_content_json = json.loads(file_content)
                                return JSONResponse({"filename": filename, "content": file_content_json})
                            except json.JSONDecodeError:
                                return JSONResponse({"filename": filename, "content": file_content})
                    except (IOError, OSError) as e:
                        raise HTTPException(status_code=500, detail=f"Erro ao ler o ficheiro {filename}: {e}")
        raise HTTPException(status_code=404, detail=f"Ficheiro com originId '{origin_id}' não encontrado")
    except FileNotFoundError:
        raise HTTPException(status_code=404, detail="Diretório de dados não encontrado")