Spaces:
Running
Running
File size: 7,347 Bytes
38a2ef1 0d2544a de0f224 e963852 1ff63a0 45b771c 38a2ef1 45b771c 7754007 45b771c 38a2ef1 35d85ac 38a2ef1 45b771c 38a2ef1 45b771c 1ff63a0 403b5f0 4387e3e 1ff63a0 764f911 1ff63a0 ef851b3 a0787f2 9c36111 38a2ef1 55f7150 38a2ef1 55f7150 0d2544a 14b8c90 c8aef77 38a2ef1 a0787f2 45b771c 1ff63a0 45b771c 80f59d0 1ff63a0 45b771c 4387e3e 45b771c c8aef77 45b771c 0d2544a 38a2ef1 0d2544a 38a2ef1 0d2544a 38a2ef1 0d2544a 8f0b65d 2a8236b 8f0b65d 2a8236b 8f0b65d 38a2ef1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
from typing import List
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse
from models import RequestModel
import os
import json
import cv2
import numpy as np
import base64
import requests
from PIL import Image
from io import BytesIO
from tensorflow.keras.applications import MobileNetV2
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
from tensorflow.keras.models import Model
from tensorflow.keras.preprocessing.image import img_to_array
from sklearn.metrics.pairwise import cosine_similarity
BASE_DIR = "saved_data"
app = FastAPI()
mobilenet = MobileNetV2(weights="imagenet", include_top=False, pooling='avg')
def orb_sim(img1, img2):
# ORB
orb = cv2.ORB_create()
kp_a, desc_a = orb.detectAndCompute(img1, None)
kp_b, desc_b = orb.detectAndCompute(img2, None)
# Brute-force matcher
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
matches = bf.match(desc_a, desc_b)
similar_regions = [i for i in matches if i.distance < 20]
if len(matches) == 0:
return 0
return len(similar_regions) / len(matches)
def preprocess_image_for_mobilenet(image):
# Garantir que a imagem tem 3 canais
if len(image.shape) == 2:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
elif image.shape[2] == 1:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
else:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Redimensionar e preparar imagem
image = cv2.resize(image, (224, 224))
image = img_to_array(image)
image = np.expand_dims(image, axis=0)
image = preprocess_input(image)
return image
def mobilenet_similarity(img1, img2):
try:
img1_proc = preprocess_image_for_mobilenet(img1)
img2_proc = preprocess_image_for_mobilenet(img2)
feat1 = mobilenet.predict(img1_proc, verbose=0)
feat2 = mobilenet.predict(img2_proc, verbose=0)
sim = cosine_similarity(feat1, feat2)[0][0] # Valor entre -1 e 1
sim_score = (sim + 1) * 50 # Escalar para 0-100
print(f"MobileNet similarity score is {sim_score}")
return float(sim_score)
except Exception as e:
print("Erro ao calcular similaridade com MobileNet")
return 0
def load_image(source):
Image.MAX_IMAGE_PIXELS = None
if source.startswith('http'):
response = requests.get(source)
img = np.asarray(bytearray(response.content), dtype=np.uint8)
img = cv2.imdecode(img, cv2.IMREAD_GRAYSCALE)
else:
img = base64.b64decode(source)
img = Image.open(BytesIO(img))
img = np.array(img)
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
return img
app = FastAPI()
BASE_DIR = "/tmp/data"
@app.post("/save")
async def save(image_data: RequestModel):
os.makedirs(BASE_DIR, exist_ok=True)
filename = os.path.join(BASE_DIR, f"{image_data.originId}_{image_data.assetCode}.json")
img1 = load_image(image_data.originSource)
img2 = load_image(image_data.source)
similarity_orb = None
similarity_mobilenet = None
if img1 is not None and img2 is not None:
similarity_orb = orb_sim(img1, img2)
print(f"Similaridade ORB entre {image_data.originSource} e {image_data.source}: {similarity_orb}")
similarity_mobilenet = mobilenet_similarity(img1, img2)
print(f"Similaridade Mobilenet entre {image_data.originSource} e {image_data.source}: {similarity_mobilenet}")
data_to_save = image_data.dict()
if similarity_orb is not None:
data_to_save["similarityOrb"] = similarity_orb
data_to_save["similarityMobilenet"] = similarity_mobilenet
with open(filename, "w") as f:
json.dump(data_to_save, f, indent=4)
return True
@app.get("/files")
async def list_files():
try:
files_data = []
for filename in os.listdir(BASE_DIR):
filepath = os.path.join(BASE_DIR, filename)
if os.path.isfile(filepath):
try:
with open(filepath, "r") as f:
file_content = f.read() # Lê o conteúdo do ficheiro
# Tenta decodificar o conteúdo como JSON, se possível
try:
file_content_json = json.loads(file_content)
files_data.append({"filename": filename, "content": file_content_json})
except json.JSONDecodeError:
files_data.append({"filename": filename, "content": file_content}) # Se não for JSON, retorna o texto
except (IOError, OSError) as e:
raise HTTPException(status_code=500, detail=f"Erro ao ler o ficheiro {filename}: {e}")
return JSONResponse({"files_data": files_data})
except FileNotFoundError:
raise HTTPException(status_code=404, detail="Diretório de dados não encontrado")
@app.get("/files/similar")
async def list_similar_files():
try:
files_data = []
for filename in os.listdir(BASE_DIR):
filepath = os.path.join(BASE_DIR, filename)
if os.path.isfile(filepath):
try:
with open(filepath, "r") as f:
file_content = f.read()
try:
file_content_json = json.loads(file_content)
# Check for similarityOrb and filter
if "similarityOrb" in file_content_json and file_content_json["similarityOrb"] > 0:
files_data.append({"filename": filename, "content": file_content_json})
except json.JSONDecodeError:
pass # Skip files that are not valid JSON
except (IOError, OSError) as e:
raise HTTPException(status_code=500, detail=f"Erro ao ler o ficheiro {filename}: {e}")
return JSONResponse({"files_data": files_data})
except FileNotFoundError:
raise HTTPException(status_code=404, detail="Diretório de dados não encontrado")
@app.get("/files/find/{origin_id}")
async def get_file_by_origin_id(origin_id: int):
try:
for filename in os.listdir(BASE_DIR):
if filename.startswith(f"{origin_id}_") and filename.endswith(".json"):
filepath = os.path.join(BASE_DIR, filename)
if os.path.isfile(filepath):
try:
with open(filepath, "r") as f:
file_content = f.read()
try:
file_content_json = json.loads(file_content)
return JSONResponse({"filename": filename, "content": file_content_json})
except json.JSONDecodeError:
return JSONResponse({"filename": filename, "content": file_content})
except (IOError, OSError) as e:
raise HTTPException(status_code=500, detail=f"Erro ao ler o ficheiro {filename}: {e}")
raise HTTPException(status_code=404, detail=f"Ficheiro com originId '{origin_id}' não encontrado")
except FileNotFoundError:
raise HTTPException(status_code=404, detail="Diretório de dados não encontrado") |